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Motivation Sequential Monte Carlo Algorithm Extension to Unknown T2
Accurate characterization of the dynamics of a quantum system 1S We use the sequential Monte Carlo “Adaptive Bayesian Experiment Design - We also consider models based on hyperpgrgmeters of some undeﬂying
important for many applications in quantum information processing, (SMC) algorithm to efficiently [ Simi'a:r(jl o | g;g;f;'ig’;;g; ] distribution. For example, in the precession model, if the “true” w is
including robust control design and simulation. Our goal here is to approximate expectation values over (oo } LN g W itself drawn from a Lorentz distribution with location wo and scale Y,
provide an algorithm to estimate parameters of unknown posterior distributions. This [ vei) then we obtain the unknown-T2 model:
Hamiltonians, as well to quantify our uncertainty in those estimates. algorithm works by approximating [ Speetaton |
We do so by applying the methods of Bayesian inference and adaptive the true distribution over models as a 4V 1
experiment design. weighted sum of delta functions [ Opﬁmizm] ' Pr (O | model = (a)() , Y ); t) — | e_t'y COS ((Ut)
We benchmark our algorithm using several different models, the (often called “particles”): [M'mt} 2 2
simplest being that of a single qubit undergoing Larmor precession at 4D
an unknown frequency w. [ Si”‘i'a“” J 1 .
Pr(D|z; Copt)
Pr(z|D,C) = Y wid(x — ®;) (k- Conclusions
: Px(2|D, Cop)
. 2 Z
Pr (data =0 | model = W, t) — COS (w L / 2) - . Our work provides a simple algorithm that applies Bayesian inference
Bay[e eee ) e to learn a Hamiltonian in an online fashion; that is to say, that our
algorithm learns the Hamiltonian parameters as the experiment

Here, t is a control parameter that we can vary to adaptively query the Expectation values can now be computed as finite sums, and the Bayes proceeds rather than collecting data and inferring the Hamiltonian
dynamics of the model. update step can be computed with one calculation per SMC particle. through post-processing. This eliminates the need to store and process

gigabytes of data that are recovered from even relatively short
experiments. Our work has several advantages over existing
approaches to learning Hamiltonian parameters. First, it can be used to
estimate the optimal parameterization of the dynamics of an arbitrary
quantum system within a space of model Hamiltonians. Second, it can
be used to provide a region estimate of the Hamiltonian parameters.
The importance of this is obvious: it allows us to not only learn

the unknown parameters but also quantify our uncertainty in them.

In order to explore the parameter space, we occasionally resample,
moving particles and resetting their weights so as to preserve
expectation values.
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We infer parameters of a model by using Bayes” Rule:
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PI‘(:B | D- C) __ Pr (D | L, C) Pr ( w) This figure demonstrates the flow of probability mass and particles as Thir d{ our ana%ysis of the algorithm ?hOWS a clear trade o between the
' PI‘(D ‘ C ) the algorithm processes data. The red dot and line represent the expenme.)ntal .tlme and the computational time needed to parameterize
randomly selected “true” model while the black dots are the SMC the Hamiltonian.

particles (the weights are uniform here).
We judge the quality of an estimate by the squared error loss:
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Ultimately, the performance of any algorithm is measured by the

0.001 ¢

quadratic loss averaged over the distribution of parameters. This
quantity is called the Bayes risk: o
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- . . . . indicate trials in which initial guesses were optimized using the Newton Conjugate Journal of P hYSiCS- 14 103013 (2012).
The utility of a hypothetical experiment C is then the expected negative Gradient (NCG) method. For each data set, the corresponding thick line indicates the ' : : : :
. . . . . . , DTS [m]®4#[m] For more information and a software implementation,
of the risk function. Our algorithm adaptively designs experiments that Bayesian Cramer Rao Bound (BCRB). Errors in estimating the performance are | . q h/rohl
efficiently provide information about the system by optimizing control indicated by red shaded regions around each curve. As expected, the performance of please visit http:/ /www.cgranade.com/research/rohl or
. C s the SMC algorithm improves as the number of particles increases. [m] scan the code at left.
parameters with respect to this utility.
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