Unstitute for Quantum Computing, University of Waterloo, 2Department of Physics, University of Waterloo, >Department of Applied Mathematics, University of Waterloo,

MOTIVATION

Given a system of interest, we require accurate
knowledge of its Hamiltonian H in order to:

» Make accurate and honest predictions.

» Develop control sequences and error correcting
codes for the system.

In order to develop high-fidelity control sequences,
we must also learn how the dynamics of our system
depend on our control knobs.

STATEMENT OF PROBLEM

Let our model of a system depend on some model
parameters @, and suppose that we can perform
experiments described by design parameters é.
Then, we wish to reduce the risk associated with
estimating © by choosing and performing a
sequence of experiments on the system.

EXAMPLE SYSTEM

An example of a system of interest is that of a system
undergoing Rabi oscillations, given by the
Hamiltonian H = 30, acting on the initial state

= |0) (0|, where w is the parameter to be
estimated. Experiments on this system consist of
allowing it to evolve for an amount of time ¢, then
measuring the state. The likelihood function for this
model is then given by

Pr(Olw,t) =1 —Pr(ljw,t), Pr(llw,t) = cos*(tw/2).

ExPERIMENT DESIGN

This example shows that, when modeling quantum
mechanical systems, the likelihood depends strongly
on the design of an experiment.
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UTtIiLiTY

Because of the strong dependence of L on ¢, not all
experiments will be equally useful to perform. We
capture this notion with utility functions such as the
relative entropy or reduction in variance, written as:

Ure (€)
uvar (g)

= B4 [D (Pr(®|d, @) || Pr(®))]
= E,; [Var(Pr(®)) — Var(Pr(w|d, €))]

OVERVIEW OF OUR ALGORITHM

GREEDY VS GLOBAL OPTIMIZATION

As we gain more knowledge about @, the utility
landscape changes. The greedy strategy for selecting
experiments maximizes the expected utility at each step.

We then can ask whether there is a better strategy that, by
accepting lower utilities in intermediary steps, can achive
a smaller risk for the same number of experiments.
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RESULTS REsuULTS

NyguistT CONSIDERED HARMFUL

A common technique is to restrict to the experiments
Nyquist sampling times, but we show that this is, on
average, suboptimal.
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(a) Example of negative variance
utility with Nyquist times indicated
by vertical lines.

(b) Mean risk of Nyquist-restricted
adaptive algorithm compared to
unrestricted.

Crucially, the typical argument via Nyquist sampling fails
in the strong-measurement case we considered, as we are
not sampling a function, but a family of probability
distributions. Thus, there is no “signal” to reconstruct, in
the sense of the Nyquist sampling theorem.

GREED AND IGNORANCE

Choosing the globally optimal experiment is
computationally intensive in general, as it requires
averaging over the many branches of the decision tree
shown below. On the other hand, the greedy strategy is
much less computationally demanding.

O< Experiment Choice @< Random Outcome B=> Bayes Update Step

Example decision tree for experiment choice.

In the special case of a uniform prior, however, we found
numerically that the greedy strategy performs nearly as
well as the globally optimal strategy. Thus, in practice, we
do well to consider only the next step when selecting
experiments, making our algorithm far more attractive.

CONCLUSIONS

Our algorithm provides an exponential speedup over naive
parameter estimation methods, such as Fourier estimation. We
have also shown that Nyquist sampling is not optimal for a
problem of interest, and that the greedy strategy is optimal only for
a uniform prior.

Together, these results demonstrate the usefulness of an adaptive
Bayesian algorithm for parameter estimation in quantum
mechanical systems, especially in comparison with other
algorithms in common use. In the presence of noise, this
improvement becomes still more stark.

We expect that in more complicated systems, the Bayesian adaptive
method will remain useful, especially in applications such as
optimal control theory, where having a distribution over
Hamiltonians is significantly more useful than a single best
estimate.

FUTURE DIRECTIONS

There are many interesting questions left to answer, including:
» How does our algorithm work in multi-parameter systems?

» What is the appropriate loss function to use for multi-parameter
systems?

» What utility function should be employed?
» Is this algorithm useful in the ensemble-measurement scenario?

Additionally, we plan on applying our algorithm to larger systems,
as well as systems with more direct applicability to experimental
physics.
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For MORE INFORMATION

Please visit http://goo.gl/y406Y for more
information, or scan the code at right.
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