
Semiquantum Algorithms for
Characterization and Verification

Christopher Granade
www.cgranade.com/research/talks/msr-2014

Joint work with:
Nathan Wiebe Christopher Ferrie D. G. Cory

Institute for Quantum Computing
University of Waterloo, Ontario, Canada

July 1, 2014
Microsoft Research

10/abc→ doi.org/abc

www.cgranade.com/research/talks/msr-2014
http://doi.org/abc
doi.org/abc


Introduction SMC QHL Bootstrapping Conclusions Overview Decision Theory

Characterizing Quantum Systems

Characterizing quantum systems is an essential task in
quantum information.

Accurate knowledge required for high-fidelity control.
Allows for comparing to proven and estimated thresholds.
Characterization allows for validating control.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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State Tomography

Common task: characterize the state ρ of a quantum system.
Tomographic approach: measure pi = Tr(Eiρ) for a positive
operator-valued measure {Ei}.
Given measurement record {di}, what should ρ̂ be?

Need to ensure ρ ≥ 0, is full-rank.
Exponentially many parameters needed.
How to parameterize uncertainty?

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Blume-Kohout 2010 10/cn772j)

http://doi.org/cn772j
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Process Tomography

Can also consider learning about quantum processes,
S : ρi 7→ ρf .

Even more parameters
Negativity: difficult to separate sampling error from
violation of assumptions (e.g. initially-correlated states)

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Altepeter et al. 2003 10/dtdk4z; Boulant et al. 2003 10/fgvbg9; Weinstein et al. 2004 10/bn6sn2)

http://doi.org/dtdk4z
http://doi.org/fgvbg9
http://doi.org/bn6sn2
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Bayesian Approaches

Model data collection as a probability distribution, called a
likelihood function

Pr(d|x; e).

d: data, x: model, e: experiment

Example

Single qubit, Larmor precession at an unknown frequency ω,
unknown dephasing time T2:

H(ω) =
ω

2
σz, |ψin〉 = |+〉 , M = {|+〉 〈+| , |−〉 〈−|}

Pr(d = 0|x = (ω,T2); e = (t)) =
1
2

(1− e−t/T2) + e−t/T2 cos2(ωt/2)

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Updating Knowledge

Once we have a likelihood function for our model, we can
reason about

Pr(x|d, e),
what we know about our model having seen some data.

By Bayes’ rule,

Pr(x|d, e) =
Pr(d|x; e)
Pr(d|e) Pr(x),

telling us that our knowledge is intimately connected to our
ability to simulate.

Estimate x̂ as the expectation over x,

x̂ = E[x] =

∫
x Pr(x) dx.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Loss

Figure of merit: how well have we learned a model?
Assign to estimate x̂ of a “true” model x a loss, describing how
bad x̂ does at estimating x.

Definition (Quadratic Loss)

LQ(x̂, x) = (x̂− x)TQ(x̂− x),

where Q is a positive semidefinite scale matrix.

The quadratic loss generalizes the MSE for multiple
parameters.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Risk and Bayes Risk

Estimator: function from data records D to estimates x̂(D).
What is the expected loss?

Definition (Risk)

R(x̂, x) = ED[L(x̂(D), x)]

Since we don’t know the true model a priori, we average again
to obtain the Bayes risk.

Definition (Bayes Risk)

r(x̂, π) = Ex∼π[R(x̂, x)]

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Cramér-Rao Bound

The Fisher information

I(x) = ED[(∇x log Pr(D|x))(∇x log Pr(D|x))T]

describes how much information about x is obtained by
sampling data.

The Cramér-Rao bound tells how well any unbiased estimator
can do. If Q = 1, then

R(x̂, x) = Tr(Cov(x̂)) ≥ Tr(I(x)−1).

Compare: quantum Cramér-Rao bound (Heisenberg limit).
Not necessarily the limit of practical interest.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Ferrie, Granade and Cory 2013 10/tfx)

http://doi.org/tfx
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Bayesian Cramér-Rao Bound

Integrating the Fisher information over the prior π results in a
Bayesian analog, the Bayesian Cramér-Rao bound:

B := Ex[I(x)], r(π) ≥ B−1.

If experiments are designed adaptively, then the current
posterior is used instead of the prior.
The BCRB can be computed iteratively, making it useful for
tracking optimality in an online fashion.

Bk+1 = Bk +

{
Ex∼π[I(x; ek+1)] (non-adaptive)
Ex|d1,...,dk

[I(x; ek+1)] (adaptive)

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Gill and Levit 1995; Ferrie, Granade et al. 2012 10/s87)

http://doi.org/s87
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Sequential Monte Carlo

SMC is a numerical algorithm for generating samples from a
distribution.

prior
Bayes’ Rule−→ posterior

Bayes’ rule acts as a transition kernel from prior samples to
posterior samples.

Posterior samples then give Monte Carlo approximations to
integrals/expectations.

SMC Approximation

Pr(x) ≈
n∑
i

wiδ(x− xi)

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Doucet and Johansen 2011; Huszár and Houlsby 10/s86; Granade et al. 2012 10/s87)

http://doi.org/s86
http://doi.org/s87
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Ambiguity and Impovrishment

The SMC approximation can represent distributions by density
of particles (left), or by weight (right).

4 3 2 1 0 1 2 3
4

3

2

1

0

1

2

3

4

4 2 0 2 4

4

2

0

2

4

Using weight is less numerically stable, results in smaller
effective number of particles.

ness := 1/
∑

i

w2
i

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Numerical Stability and Resampling

As data D is collected, Pr(xi|D)→ 0 for initial particles {xi}.
Results in ness → 0 as data is collected.B

Can mitigate by resampling: moving information from the
weights to the density of SMC particles.

Resampling when ness/n ≤ 0.5 helps preserve representative
sample. Moreover, monitoring ness can herald some kinds of
failures.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Liu and West Algorithm

Draw new particles x′ from kernel density estimate

Pr(x′) ∝
∑

i

wi exp
(

(x′ − µi)
TΣ(x′ − µi)

)
µi = axi + (1− a)E[x]

Σ = (1− a2) Cov[x]

Set new weights to be uniform, so that ness = n.

a = 1, h = 0: Bootstrap filter, used in state-space
applications like Condensation.
a2 + h2 = 1: Ensures E[x′] = E[x] and Cov(x′) = Cov(x),
but assumes unimodality.
a = 1, h ≥ 0: Allows for multimodality, emulating
state-space with synthesized noise.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(West 1993; Isard and Blake 1998 10/cc76f6; Liu and West 2001)

http://doi.org/cc76f6
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Putting it All Together: The SMC Algorithm

1 Draw {xi} ∼ π, set {wi} = 1/n.
2 For each datum dj ∈ D:

1 wi ← wi × Pr(dj|xi; ej).
2 Renormalize {wi}.
3 If ness/n ≤ 0.5, resample.

3 Report x̂ := E[x] ≈∑i wixi.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Sequential Monte Carlo

With SMC and resampling, particles move towards the true
model as data is collected.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Near-Optimality for cos2

Using adaptive experiment design with Newton
Conjugate-Gradient:

20 40 60 80 100
N

5 ´ 10-5
1 ´ 10-4

5 ´ 10-4
0.001

0.005
0.010

EHLL
Expected Loss H10,000 particlesL

Unoptimized BCRB for Unopt. NCG Optimized BCRB for NCG

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Granade et al. 2012 10/s87)

http://doi.org/s87
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Randomized Benchmarking Example

Applying sequences of random Clifford gates twirls errors in a
gateset, such that they can be simulated using depolarizing
channels.

…

Clifford Decomposition
into gates

Imperfect twirling sequence Equivalent depolarizing
channel

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Knill et al. 2008 10/cxz9vm; Magesan et al. 2012 10/tfz; Magesan et al. 2012 10/s8j)

http://doi.org/cxz9vm
http://doi.org/tfz
http://doi.org/s8j
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Randomized Benchmarking Example

SMC: interpret survival probability as likelihood. For
interleaved case, the lowest-order model is:

Pr(survival|A,B, p̃, pref; m,mode) =

{
Apm

ref + B reference
A(p̃pref)

m + B interleaved

A,B: state preparation and measurement
m: sequence length
pref: reference depolarizing parameter
p̃: depolarizing parameter for gate of interest

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Granade, Ferrie and Cory 2014 1404.5275)

https://scirate.com/arxiv/1404.5275
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Randomized Benchmarking Example

Using SMC, useful conclusions can be reached with
significantly less data than with least-squares fitting.

Bayesian Cramer-Rao Bound Posterior Variance SMC Risk LSF Risk

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Granade, Ferrie and Cory 2014 1404.5275)

https://scirate.com/arxiv/1404.5275
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Method of Hyperparameters

If “true” model x ∼ Pr(x|y), for some hyperparameters y, can est.
y directly:

Pr(d|y; e) =

∫
Pr(d|x, y; e) Pr(x|y; e) dx.

Example

For Larmor precession with ω ∼ Cauchy(ω0,T−1
2 ),

Pr(d|(ω0,T−1
2 ); t) = e−tT−1

2 cos2(ω0t/2) + (1− e−tT−1
2 )/2.

Let y = (ω0,T−1
2 ).

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Granade et al. 2012 10/s87)

http://doi.org/s87
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State-Space SMC

Alternatively, can move particles at each timestep
x(tk) ∼ Pr(x(tk)|x(tk−1)).

This represents tracking of a stochastic process.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Confidence and Credible Regions

Characterizing uncertainty of estimates is critical for many
applications:

Definition (Confidence Region)

Xα is an α-confidence region if PrD(x0 ∈ Xα(D)) ≥ α.

Definition (Credible Region)

Xα is an α-credible region if Prx(x ∈ Xα|D) ≥ α.

Credible regions can be calculated from posterior Pr(x|D) by
demanding ∫

Xα

d Pr(x|D) ≥ α.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Granade et al. 2012 10/s87; Ferrie 2014 10/tb4)

http://doi.org/s87
http://doi.org/tb4
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High Posterior Density

Want credible regions that are small (most powerful).

Posterior covariance ellipses (PCE)— good for
approximately normal posteriors
Convex hull— very general, but verbose description
Minimum volume enclosing ellipses (MVEE)— good
approximation to hull

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Granade et al. 2012 10/s87; Ferrie 2014 10/tb4)

http://doi.org/s87
http://doi.org/tb4
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Comparison of HPD Estimators

For multimodal distributions, clustering algorithms can be
used to exclude regions of small support. For a noisy coin
model (heads probability p, visibility η):

MVEE
Hull

PCE

Invalid
Valid

Left, no clustering. Right, DBSCAN.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

Plot courtesy of Chris Ferrie. (Ferrie 2014 10/tb4)

http://doi.org/tb4


Introduction SMC QHL Bootstrapping Conclusions SMC Algorithm Examples Applications

Hyperparameters and Region Estimation

In some hyperparameter models, can also express as region
estimator on underlying parameters.

20 40 60 80 100
N

10-6

10-5

10-4

0.001

VarHΩ
` L - VarHΩtrueL

Excess Variance

Figure : Larmor precession model w/ ω ∼ N(µ, σ2), three exp.
design strategies

Critically, the covariance region for ω is not smaller than the
true covariance given by the hyperparameter σ2.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Granade et al. 2012 10/s87)

http://doi.org/s87
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Bayes Factors and Model Selection

In SMC update wi 7→ wi × Pr(d|x; e)/N ,

N ≈ Pr(d|e).

Running SMC updaters for distinct models A and B, collecting
normalizations NA and NB at each step gives

BF =
NA

NB
≈ Pr(d|A; e)

Pr(d|B; e)

For full data record, can multiply normalization records to
select A versus B.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Wiebe, Granade, Ferrie and Cory 2014 10/tdk)

http://doi.org/tdk
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For example, deciding between linear- (left) and
complete-graph (right) Ising models:
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Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Wiebe, Granade, Ferrie and Cory 2014 10/tdk)

http://doi.org/tdk
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Main cost to SMC: simulation calls. n each Bayes update.

Simulation and learning are intimately connected: if we can
simulate, then we can learn.

Big Idea

Use quantum simulation to learn about unknown quantum
systems.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification
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Weak and Strong Simulation

Strong
Simulator

Pr(D|x)
x

D

Weak
Simulator

D ~ Pr(D|x)x

Quantum simulation produces data, not likelihoods. Must
sample to estimate likelihood.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Ferrie and Granade 2014 10/tdj)

http://doi.org/tdj
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Adaptive Likelihood Estimation

Solution

Treat estimating the likelihood as a secondary estimation
problem.

2-outcome model: hedged binomial estimator finds the
probability p0 of a “0” outcome by repeatedly sampling a weak
simulator.

Variance well-known, so collect until a fixed tolerance is
reached.

We will show that SMC is robust to likelihood estimation
errors.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Ferrie and Blume-Kohout 2012 10/tf2, Ferrie and Granade 2014 10/tdj)

http://doi.org/tf2
http://doi.org/tdj
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Quantum Likelihood Evaluation

First approach: compare classical outcomes of unknown and
trusted quantum systems.

Evolve state |ψ〉 for time t then measure, getting d.
For each particle xi, repeatedly sample from quantum
simulation of e−itxi , getting D′.

Unknown System Simulator

t

|ψ〉 e−iH(x0)t d

t, xi

|ψ〉 e−iH(xi)t D′

Estimated likelihood ˆ̀i := |{d′ ∈ D′|d′ = d}|. SMC update:

wi 7→ wi ˆ̀i/
∑

i

wi ˆ̀i.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification

(Wiebe, Granade, Ferrie and Cory 2014 10/tf3)

http://doi.org/tf3
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QLE can work, but as t→∞, Pr(d|x; t) equilibriates. Thus,
t ≥ teq is uninformative.

By CRB, error then scales as O(1/Nt2
eq).
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Interactive QLE

Solution: couple unknown system is to a quantum simulator,
then invert evolution by hypothesis x−.

t, x−

× e+iH(x−)t d

|ψ〉 e−iH(x0)t ×

t

Echo

If x− ≈ x0, then
∣∣〈ψ|e−it(H(x0)−H(x−))|ψ〉

∣∣2 ≈ 1.
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Alternate Interpretation

QHL finds x̂ such that H(x̂) most closely approximates
“unknown” system H0.

Gives an α-credible bound on error introduced by replacing
H0 → H(x̂).
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Posterior Guess Heuristic

Inversion connects the model and experiment spaces. Use to
come up with a heuristic for experiment designs.

Choose xe, x′e ∼ Pr(x), the most recent posterior.
Choose t = 1/‖xe − x′e‖.
Return e = (xe, t).
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Ising Model on Spin Chains

Hamiltonian: nearest-neighbor Ising models on a chain of nine
qubits.
Interactivity allows for dramatic improvements over QLE.
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Ising Model on the Complete Graph

With IQLE, can also learn on complete interaction graphs. We
show the performance as a function of the depolarization
strength N .
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Ising Model with the Wrong Graph

Simulate with spin chains, suppose “true” system is complete,
with non-NN couplings O(10−4).
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Scaling Parameter

dim x, not dimH, determines scaling of IQLE.
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Figure : 4 qubit (red) and 6 qubit (blue) complete graph IQLE
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Scaling and Dimensionality

In both the spin-chain and complete graph cases, the quadratic
loss on average decays exponentially, LQ ∝ e−γN, for some rate

constant γ.

Consider γ = γ(dim x):
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This suggests that, with access to a quantum simulator,
learning may scale efficiently.
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SMC + IQLE:

Possibly scalable with quantum resources.
Robust to finite sampling.
Robust to approximate models.

Still requires simulator be at least as large as system of interest.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification



Introduction SMC QHL Bootstrapping Conclusions Overview Example Non-Commuting H

Information Locality

To go further, we want to localize our experiment, such that we
can simulate on a smaller system.

X Y

W

Measure on X, simulate on W, and ignore all terms with
support over Y.

Gives approximate model that can be used to learn Hamiltonian
restricted to X.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification



Introduction SMC QHL Bootstrapping Conclusions Overview Example Non-Commuting H

Information Locality

To go further, we want to localize our experiment, such that we
can simulate on a smaller system.

X Y

W

Measure on X, simulate on W, and ignore all terms with
support over Y.

Gives approximate model that can be used to learn Hamiltonian
restricted to X.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification



Introduction SMC QHL Bootstrapping Conclusions Overview Example Non-Commuting H

Local and Global Particle Clouds

To reconstruct the entire system, we need to combine data
from different partitions.

U
n
tr
u
st
ed

S
im

W₁
W₂

W₃
W₄

W' W' W' W'

IQ
L
E

Separate out one partition Wk at a time, maintain a global
cloud of particles.
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Local and Global Particle Clouds

Initialize {xi} over entire system. Then, for each simulated
subregister Wk:

1 Make “local” particle cloud {xi|Wk} by slicing {xi}.
2 Run SMC+IQLE with {xi|Wk} as a prior.
3 Ensure that the final “local” cloud has been resampled

(has equal weights).
4 Overwrite parameters in “global” cloud {xi}

corresponding to post-resampling {xi|Wk}.
In this way, all parameters are updated by an SMC run.
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Q50 Example

Goal: characterize a 50-qubit Ising model (complete graph)
with unknown ZZ couplings.

All Hamiltonian terms commute, but initial state doesn’t. Let
AX be observable, AX′ be sim. observable.

‖AX(t)− AX′(t)‖ ≤ ‖AX(t)‖(e2‖H|Y‖t − 1)

⇒ t ≤ ln
(

δ

‖AX(t)‖ + 1
)

(2‖H|Y‖)−1,

where δ is the tolerable likelihood error.
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Example Q50 Run
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|Xk| = 4, |Wk| = 8, n = 20, 000, N = 500, exp. decaying
interactions.
NB: 1225 parameter model, L2 error of 0.3%.
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Example Q50 Run
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|Xk| = 4, |Wk| = 8, n = 20, 000, N = 500, exp. decaying
interactions.
NB: 1225 parameter model, L2 error of 0.3%.
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Lieb-Robinson Bounds

More generally, for [H|W,HY] 6= 0, use Lieb-Robinson bound.
If interactions between X and Y decay sufficiently quickly, then
there exists C, µ and v s. t. for any observables AX(t), BY:

‖[AX(t),BY]‖ ≤ C‖AX(t)‖‖BY‖|X||Y|(ev|t| − 1)e−µd(X,Y)

This guarantees that error due to truncation is bounded if we
choose small t.
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Lieb-Robinson Bounds

Can find bound in terms of Hamiltonian by considering H
site-by-site.

YW

Ω₁
Ω₂

Ω₃

…

Let Hj be the Hamiltonian term containing distance-j
interactions between W and Y, acting on sites Ωj.

‖A(t)− eiH|WtAe−iH|Wt‖ ≤
∑

j

C‖A‖‖Hj‖|X||Ωj|e−µj(ev|t| − 1)
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Trotterization

Can improve the Lieb-Robinson bound by “shaking” between
simulator and system. Using r ≈ vt swap gates, error is O(t).
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t / r
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Bayesian inference: simulation as a
characterization/validation resource.

Sequential Monte Carlo: numerical algorithm for
inference.
Robust to many practical concerns.
Can use quantum simulation to offer potential scaling.
Using robustness of SMC, can truncate simulation→
bootstrapping.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification



Introduction SMC QHL Bootstrapping Conclusions

Bayesian inference: simulation as a
characterization/validation resource.
Sequential Monte Carlo: numerical algorithm for
inference.

Robust to many practical concerns.
Can use quantum simulation to offer potential scaling.
Using robustness of SMC, can truncate simulation→
bootstrapping.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification



Introduction SMC QHL Bootstrapping Conclusions

Bayesian inference: simulation as a
characterization/validation resource.
Sequential Monte Carlo: numerical algorithm for
inference.
Robust to many practical concerns.

Can use quantum simulation to offer potential scaling.
Using robustness of SMC, can truncate simulation→
bootstrapping.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification



Introduction SMC QHL Bootstrapping Conclusions

Bayesian inference: simulation as a
characterization/validation resource.
Sequential Monte Carlo: numerical algorithm for
inference.
Robust to many practical concerns.
Can use quantum simulation to offer potential scaling.

Using robustness of SMC, can truncate simulation→
bootstrapping.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification



Introduction SMC QHL Bootstrapping Conclusions

Bayesian inference: simulation as a
characterization/validation resource.
Sequential Monte Carlo: numerical algorithm for
inference.
Robust to many practical concerns.
Can use quantum simulation to offer potential scaling.
Using robustness of SMC, can truncate simulation→
bootstrapping.

Granade, Wiebe, Ferrie and Cory Semiquantum Algorithms for Characterization and Verification



Introduction SMC QHL Bootstrapping Conclusions

Further Information

Slides, a journal reference for this work, a full bibliography
and a software implementation can be found at
http://www.cgranade.com/research/talks/msr-2014/ .

Thank you for your kind attention!
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