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Introduction Bayes QHL Bootstrapping Conclusions Overview

We want to build a quantum computer.

Need to push past what a classical computer can do. How do
we get to 50 qubits?
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“But remember, without quantum bootstrapping it is
impossible using today’s classical computing resources to
carefully characterize what is going on for 16 or more
entangled qubits.”

—Jon Dowling
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Building Large Systems: Computational Limits

Computational limits affect many aspects of building large
quantum systems:

Characterization of H

Characterization of controls
Design of control sequences
Verification of control

Here, we focus mostly on characterization and verification.
Control design will be addressed as a calibration problem.
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Bootstrapping to Q50

Express challenges in terms of simulation, then use quantum
simulators.

Use small quantum simulators to characterize and verify large
devices, bootstrap up to Q50 scale.
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Outline

Bayesian inference as platform

Sequential Monte Carlo: algorithm for Bayesian inference
Generality and robustness of SMC

Hamiltonian learning w/ quantum resources
Bootstrapping Hamiltonian learning
Learning control distortions
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Modeling Experiments

Likelihood Function

Model data collection as a probability distribution:

Pr(data|model; experiment)

The likelihood function describes an experiment and its
possible outcomes.
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Born’s Rule: Quintessential Likelihood

Can interpret Born’s Rule as the likelihood for state-learning
experiments:

Pr(click|ψ;φ) = | 〈φ|ψ〉 |2

data click or no click
model preparation |ψ〉

experiment measurement 〈φ|

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Hamiltonian Learning Likelihood

Consider Larmor precession at an unknown ω and T2:

H(ω) =
ω

2
σz, |ψin〉 = |+〉 , M = {|+〉 〈+| , |−〉 〈−|}

Pr(d = 0|model = (ω,T2); exp = t) =
1− e−t/T2

2
+e−t/T2 cos2(ωt/2)

Parameterize model as x = (ω,T2), experiment as e = (t).
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Let’s consider another example of a likelihood function before
we move on.
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Randomized Benchmarking Likelihood

Applying sequences of random Clifford gates twirls errors in a
gateset, such that they can be simulated using depolarizing
channels.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

(Knill et al. 2008 10/cxz9vm; Magesan et al. 2012 10/tfz; Magesan et al. 2012 10/s8j)
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Randomized Benchmarking Likelihood

Interpret survival probability as likelihood. For interleaved
case, the lowest-order model is:

Pr(survival|A,B, p̃, pref; m,mode) =

{
Apm

ref + B reference
A(p̃pref)

m + B interleaved

A,B state preparation and measurement
m sequence length

pref reference depolarizing parameter
p̃ depolarizing parameter for gate of interest

x = (A,B, p̃, pref) e = (m,mode)

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

(Granade, Ferrie and Cory 2014 1404.5275)

https://scirate.com/arxiv/1404.5275
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Updating Knowledge

Once we have a likelihood, we can now reason about

Pr(x|d, e),

what we know having seen some data.

By Bayes’ Rule: Pr(x|d, e) =
Pr(d|x;e)
Pr(d|e) Pr(x).

=⇒ Simulation is a resource for learning.

Estimate x̂ as the expectation over x,

x̂ = E[x] =

∫
x Pr(x) dx.

In many cases, difficult to perform analytically...

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Sequential Monte Carlo

SMC (aka particle filter): numerical algorithm for generating
samples from a distribution, using a transition kernel.

prior
Bayes’ Rule−→ posterior

Posterior samples then approximate
∫
/E.

SMC Approximation

Pr(x) ≈
n∑
i

wiδ(x− xi)

QInfer Open-source implementation for quantum info.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

(Doucet and Johansen 2011; Huszár and Houlsby 10/s86; Granade et al. 2012 10/s87)
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Ambiguity and Impovrishment

Ambiguity in SMC approximation:

4 3 2 1 0 1 2 3
4
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3

4

4 2 0 2 4
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density weight

Using weight is less numerically stable, results in smaller
effective number of particles.

ness := 1/
∑

i

w2
i
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Numerical Stability and Resampling

As data D is collected, Pr(xi|D)→ 0 for most initial particles
{xi}.

⇒ ness → 0 as data is collected.

Resampling: move information from weights to the density of
SMC particles.

Resampling when ness/n ≤ 0.5 preserves stability.
Monitoring ness can herald some kinds of failures.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Liu and West Algorithm

Draw new particles x′ from kernel density estimate:

Pr(x′) ∝
∑

i

wi exp
(

(x′ − µi)
TΣ(x′ − µi)

)
µi := axi + (1− a)E[x] Σ := h2 Cov[x] w′i := 1/n

Parameters a and h can be set based on application:
a = 1, h = 0: Bootstrap filter, used in state-space
applications like Condensation.
a2 + h2 = 1: Ensures E[x′] = E[x] and Cov(x′) = Cov(x),
but assumes unimodality.
a = 1, h ≥ 0: Allows for multimodality, emulating
state-space with synthesized noise.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

(West 1993; Isard and Blake 1998 10/cc76f6; Liu and West 2001)

http://doi.org/cc76f6
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Putting it All Together: The SMC Algorithm

1 Draw {xi} ∼ π, set {wi} = 1/n.
2 For each datum dj ∈ D:

1 wi ← wi × Pr(dj|xi; ej).
2 Renormalize {wi}.
3 If ness/n ≤ 0.5, resample.

3 Report x̂ := E[x] ≈∑i wixi.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Sequential Monte Carlo

With SMC and resampling, particles move towards the true
model as data is collected.
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Before bootstrapping, a few examples of SMC w/ classical
resources:

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Randomized Benchmarking Results

Using SMC, useful conclusions can be reached with
significantly less data than with least-squares fitting.
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Bayesian Cramer-Rao Bound Posterior Variance SMC Risk LSF Risk
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(Granade, Ferrie and Cory 2014 1404.5275)
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Randomized Benchmarking Results

SMC is robust, even with a quite bad prior (6.9σ).
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p̃
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P
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SMC Posterior
Bad Prior
LSF Estimate
True

Monitoring ness can herald failures due to a bad prior.
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SMC in Nitrogen Vacancy Centers

Would like to learn hyperfine coupling A between e− spin S
and 13C spin I.

H(x) = ∆zfsS2
z + γ(B + δB) · S + S · A · I

x = (∆zfs, δB,A, α, β,T−1
2,e ,T

−1
2,C)

α, β : visibility parameters

Analytic estimate sensitive to error δB in static field.
Use multiple B settings to decorrelate δB, A.
Each experiment informs about multiple parameters.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Preliminary Results from Rabi Experiment

As a test, attempt to learn δB, ∆zfs δωRabi and AN (coupling to
nitrogen spin).

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Preliminary Results from Rabi Experiment

Simulation with prior mean

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

Each average: 30k shots per point, 100 Rabi points + 200 Ramsey points
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Preliminary Results from Rabi Experiment

Simulation with posterior mean, 20 averages

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

Each average: 30k shots per point, 100 Rabi points + 200 Ramsey points
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Preliminary Results from Rabi Experiment

Simulation with posterior mean, 486 averages
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Preliminary Results from Rabi Experiment

Marginals of prior

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Preliminary Results from Rabi Experiment

Marginals of posterior, 20 averages
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Each average: 30k shots per point, 100 Rabi points + 200 Ramsey points
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Preliminary Results from Rabi Experiment

Marginals of posterior, 486 averages

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

Each average: 30k shots per point, 100 Rabi points + 200 Ramsey points
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SMC and Hamiltonian Learning as Vector Metrology

In the previous example, δBx and δBy manifest as effective
Hamiltonian by Floquet theory.

Each experiment carries phase information about δB.

SMC uses this to learn vector quantities: we do not require
that each component of δB be measured seperately.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Towards Bootstrapping

SMC uses simulation as a resource for learning.

Simulation calls: main cost to SMC (n each Bayes update).

Big Idea

Use quantum simulation to extend SMC past classical
resources.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Weak and Strong Simulation

Strong
Simulator

Pr(D|x)
x

D

Weak
Simulator

D ~ Pr(D|x)x

Quantum simulation produces data, not likelihoods. Must
sample to estimate likelihood.

Potential application for analog[ue] simulators?

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

(Ferrie and Granade 2014 10/tdj)

http://doi.org/tdj
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Weak and Strong Analog[ue]? Simulation

Strong
Simulator

Pr(D|x)
x

D

Weak
Simulator

D ~ Pr(D|x)x

Quantum simulation produces data, not likelihoods. Must
sample to estimate likelihood.

Potential application for analog[ue] simulators?

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

(Ferrie and Granade 2014 10/tdj)

http://doi.org/tdj


Introduction Bayes QHL Bootstrapping Conclusions Weak Sim. Likelihood Results

Adaptive Likelihood Estimation

Solution

Treat estimating the likelihood as a secondary estimation
problem:
Learn likelihood of untrusted system from frequencies of
trusted system.

SMC is robust to likelihood estimation errors.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Performance of SMC+ALE

Ex: Simple ‘photodetector’ model Pr(0|p) = αp + (1− p)β

ALE tolerance (1/ϵ)

M
ea

n 
sq

ua
re

d 
er

ro
r

Asymptotic bound

α, β known bright, dark references

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

(Ferrie and Granade 2014 10/tdj)
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ALE Example: Two-Outcome Models

Given:
d result of measurement

D′ set of samples from weak simulator
Hedged binomial estimate of likelihood ` from frequency k/K:

ˆ̀=
k + β

K + 2β
,

where β ≈ 0.509, k := |{d′ ∈ D′|d′ = d}|, K = |{D′}|.

Variance well-known, so collect until a fixed tolerance is
reached.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Quantum Likelihood Evaluation

Compare classical outcomes of unknown and trusted systems.

Unknown System Simulator

t

|ψ〉 e−iH(x0)t d

t, xi

|ψ〉 e−iH(xi)t D′i

For each xi:
repeatedly sample from quantum simulation of e−itxi ,
getting D′i.

estimate ˆ̀i from D′i.

SMC update: wi 7→ wi ˆ̀i/
∑

i wi ˆ̀i.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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QLE can work, but as t→∞, Pr(d|x; t) 1/dimH.
Thus, t ≥ teq is uninformative.

By CRB, error then scales as O(1/Nt2
eq).

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Interactive QLE

Solution: couple unknown system to a quantum simulator,
then invert evolution by hypothesis x−.

t, x−

× e+iH(x−)t d

|ψ〉 e−iH(x0)t ×

t

Echo

If x− ≈ x0, then
∣∣〈ψ|e−it(H(x0)−H(x−))|ψ〉

∣∣2 ≈ 1.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Posterior Guess Heuristic

Inversion connects the model and experiment spaces.
Use this duality as a heuristic for experiment design.

Choose x−, x′− ∼ Pr(x), the most recent posterior.
Choose t = 1/‖x− − x′−‖.
Return e = (x−, t).

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping

(Wiebe, Granade, Ferrie and Cory 2014 10/tf3)
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Alternate Interpretation

QHL finds x̂ such that H(x̂) most closely approximates
“unknown” system H0.

Gives an α-credible bound on error introduced by replacing
H0 → H(x̂).

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Ising Model on Spin Chains

Hamiltonian: nearest-neighbor Ising models on a chain of nine
qubits.
Interactivity allows for dramatic improvements over QLE.
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Ising Model on the Complete Graph

With IQLE, can also learn on complete interaction graphs. We
show the performance as a function of the depolarization
strength N .
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Ising Model with the Wrong Graph

Simulate with spin chains, suppose “true” system is complete,
with non-NN couplings O(10−4).
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Scaling Parameter

dim x, not dimH, determines scaling of IQLE.
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Figure : 4 qubit (red) and 6 qubit (blue) complete graph IQLE
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Scaling and Dimensionality

In spin-chain and complete graph, average error decays
exponentially,

L(N) ∝ e−γN

Assess scaling by finding γ = γ(dim x):
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With quantum simulation, learning may scale efficiently.
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SMC + IQLE:

Possibly scalable with quantum resources.
Robust to finite sampling.
Robust to approximate models.

Still requires simulator be at least as large as system of interest.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Information Locality

To go further, we want to localize our experiment, such that we
can simulate on a smaller system.

X Y

W

Measure on X, simulate on W, and ignore all terms with
support over Y.

Gives approximate model that can be used to learn Hamiltonian
restricted to X.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Local and Global Particle Clouds

To reconstruct the entire system, we need to combine data
from different partitions.

Scan 1

Scan 2

Scan 4

Separate out one partition at a time, maintain a global cloud of
particles.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Local and Global Particle Clouds

Initialize {xi} over entire system. Then, for each simulated
subregister Wk:

1 Make “local” particle cloud {xi|Wk} by slicing {xi}.
2 Run SMC+IQLE with {xi|Wk} as a prior.
3 Ensure that the final “local” cloud has been resampled

(has equal weights).
4 Overwrite parameters in “global” cloud {xi}

corresponding to post-resampling {xi|Wk}.
In this way, all parameters are updated by an SMC run.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Q50 Example

Goal: characterize a 50-qubit Ising model (complete graph)
with unknown ZZ couplings.

All Hamiltonian terms commute, but initial state doesn’t. Let
AX be observable, AX′ be sim. observable.

‖AX(t)− AX′(t)‖ ≤ ‖AX(t)‖(e2‖H|Y‖t − 1)

⇒ t ≤ ln
(

δ

‖AX(t)‖ + 1
)

(2‖H|Y‖)−1,

where δ is the tolerable likelihood error.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Example Q50 Run
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|Xk| = 4, |Wk| = 8, n = 20, 000, N = 500, exp. decaying
interactions.
NB: 1225 parameter model, L2 error of 0.3%.
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Example Q50 Run
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Scaling With N

We expect from non-truncated quantum Hamiltonian learning
that the error decays exponentially with more data. This
remains the case even with truncation.
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Lieb-Robinson Bounds

More generally, for [H|W,HY] 6= 0, use Lieb-Robinson bound.
If interactions between X and Y decay sufficiently quickly, then
there exists C, µ and v s. t. for any observables AX(t), BY:

‖[AX(t),BY]‖ ≤ C‖AX(t)‖‖BY‖|X||Y|(ev|t| − 1)e−µd(X,Y)

This guarantees that error due to truncation is bounded if we
choose small t.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Lieb-Robinson Bounds

Can find bound in terms of Hamiltonian by considering H
site-by-site.

YW

Ω₁
Ω₂

Ω₃

…

Let Hj be the Hamiltonian term containing distance-j
interactions between W and Y, acting on sites Ωj.

‖A(t)− eiH|WtAe−iH|Wt‖ ≤
∑

j

C‖A‖‖Hj‖|X||Ωj|e−µj(ev|t| − 1)

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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“Shaking”

Can improve the Lieb-Robinson bound by alternating between
simulator and system. Using r ≈ vt swap gates, error is O(t).

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Bootstrapping Algorithm

Consider H an affine map H(C) of control settings C:

H(C) = C · (H1,H2, . . . ,HM) + H0. (1)

E.g.: cross-talk.
We can learn this with truncated IQLE:

Learn H(0) to estimate Ĥ0.
Learn H(ej) for j ∈ {1, . . . ,M}.
Subtract Ĥ0 from each of the learned Hamiltonians to
estimate the other terms.
Use the pseudoinverse to derive control settings to
generate desired Hamiltonians.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Example: Controlling NN Ising Couplings

Consider H(C) such that Ci nominally controls the coupling
Hi = σ

(i)
z σ

(i+1)
z . For a 50-qubit device, dim C = 49, so this is a

(49 + 1)× 1225 ≈ 61× 103 parameter model.

We collect 200 bits of data per scan, for a total of
50× 49× 200 = 490× 103 bits of data. We use 20× 103

particles, for a total of 10 million likelihood calls.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Results for Bootstrapping 50-Qubit Simulator
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Figure : Frequencies of error ‖H(Ĉi)−Hi‖2 for Q50 bootstrapping.
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Bayesian inference: simulation as a
characterization/validation resource.

Sequential Monte Carlo: numerical algorithm for
inference.
Robust to many practical concerns.
Can use quantum simulation to offer potential scaling.
Using robustness of SMC, can truncate simulation→
bootstrapping.
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Further Information

Slides, a journal reference for this work, a full bibliography
and a software implementation can be found at
http://www.cgranade.com/research/talks/usydney-2014/ .

Thank you for your kind attention!

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Decision Theory

A few definitions help us evaluate estimates x̂ of x:

Loss How well have we learned?
LQ(x̂, x) := (x̂− x)TQ(x̂− x)

Risk On average, how well will we learn a particular
model?
R(x̂, x) := ED[L(x̂(D), x)]

Bayes risk On average, how well will we learn a range of
models?
r(x̂, π) = Ex∼π[R(x̂, x)]

Cramér-Rao Bound On average, how well can we learn?
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Cramér-Rao Bound

Fisher Information

How much information about x is obtained by sampling data?

I(x) = ED[(∇x log Pr(D|x))(∇x log Pr(D|x))T]

The Cramér-Rao Bound tells how well any unbiased estimator
can do. If Q = 1, then

R(x̂, x) = Tr(Cov(x̂)) ≥ Tr(I(x)−1).

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Bayesian Cramér-Rao Bound

Expectation of Fisher information over prior π: the Bayesian
Cramér-Rao bound.

B := Ex∼π[I(x)], r(π) ≥ B−1

For adaptive experiments, the posterior is used instead of the
prior.
The BCRB can be computed iteratively: useful for tracking
optimality online.

Bk+1 = Bk +

{
Ex∼π[I(x; ek+1)] (non-adaptive)
Ex|d1,...,dk

[I(x; ek+1)] (adaptive)

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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We can do a few more things with SMC, some of which will be
very useful in the semiquantum case.
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State-Space SMC

Can move particles at each timestep x(tk) ∼ Pr(x(tk)|x(tk−1)).

This represents tracking of a stochastic process.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping



Confidence and Credible Regions

Characterizing uncertainty of estimates is critical for many
applications:

Definition (Confidence Region)

Xα is an α-confidence region if PrD(x0 ∈ Xα(D)) ≥ α.

Credible regions can be calculated from posterior Pr(x|D) by
demanding ∫

Xα

d Pr(x|D) ≥ α.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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High Posterior Density

Want credible regions that are small (most powerful).

Posterior covariance ellipses (PCE)— good for
approximately normal posteriors
Convex hull— very general, but verbose description
Minimum volume enclosing ellipses (MVEE)— good
approximation to hull

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Comparison of HPD Estimators

For multimodal distributions, clustering can be used to
exclude regions of small support.
For a noisy coin model (heads probability p, visibility η):

MVEE
Hull

PCE

Invalid
Valid

Left, no clustering. Right, DBSCAN.
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Bayes Factors and Model Selection

Drunk Under the Streetlights

In SMC update wi 7→ wi × Pr(d|x; e)/N ,

N = N (d) ≈ Pr(d|e).

Is this useful?

Collecting normalizations NA and NB for models A, B at each
step gives

Bayes factor =
Pr(D|A; e) Pr(A)

Pr(D|B; e) Pr(B)
≈
∏

d∈DNA(d)∏
d∈DNB(d)

× Pr(A)

Pr(B)

For full data record, can multiply normalization records to
select A versus B.

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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For example, deciding between linear- (left) and
complete-graph (right) Ising models:
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Method of Hyperparameters

If “true” model x ∼ Pr(x|y), for some hyperparameters y, can est.
y directly:

Pr(d|y; e) =

∫
Pr(d|x, y; e) Pr(x|y; e) dx.

Example

For Larmor precession with ω ∼ Cauchy(ω0,T−1
2 ),

Pr(d|(ω0,T−1
2 ); t) = e−tT−1

2 cos2(ω0t/2) + (1− e−tT−1
2 )/2.

Let y = (ω0,T−1
2 ).

Granade, Wiebe, Ferrie and Cory Quantum Bootstrapping
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Method of Hyperparameters

If “true” model x ∼ Pr(x|y), for some hyperparameters y, can est.
y directly:

Pr(d|y; e) =

∫
Pr(d|x, y; e) Pr(x|y; e) dx.

Example

For Larmor precession with ω ∼ Cauchy(ω0,T−1
2 ),

Pr(d|(ω0,T−1
2 ); t) = e−tT−1

2 cos2(ω0t/2) + (1− e−tT−1
2 )/2.

Let y = (ω0,T−1
2 ).
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Hyperparameters and Region Estimation

In some hyperparameter models, can also express as region
estimator on underlying parameters.

20 40 60 80 100
N

10-6

10-5

10-4

0.001

VarHΩ
` L - VarHΩtrueL

Excess Variance

Figure : Larmor precession model w/ ω ∼ N(µ, σ2), three exp.
design strategies

Critically, the covariance region for ω is not smaller than the
true covariance given by the hyperparameter σ2.
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