
Page 1 of 62 MCM 2008 Team #3780

Ease and Toil: Analyzing Sudoku

February 18, 2008

Look at any current magazine, newspaper, computer game package or handheld gaming
device and you likely find sudoku, the latest puzzle game sweeping the nation. Sudoku
is a number-based logic puzzle in which the numbers 1 through 9 are arranged in a 9 × 9
matrix, subject to the constraint that there are no repeated numbers in any row, column,
or designated 3× 3 square.

In addition to being entertaining, sudoku promises valuable insight into computer sci-
ence and mathematical modeling. In particular, since sudoku solving is an NP-Complete
problem, algorithms to generate and solve sudoku puzzles may offer new approaches to a
whole class of computational problems . Moreover, we can further explore mathematical
modeling techniques through generating puzzles since sudoku construction is essentially
an optimization problem.

The purpose of this paper is to propose an algorithm that may be used to construct
unique sudoku puzzles with four different levels of difficulty. We attempted to minimize
the complexity of the algorithm while still maintaining separate difficulty levels and guar-
anteeing unique solutions.

In order to accomplish our objectives, we developed metrics with which to analyze the
difficulty of a given puzzle. By applying our metrics to published control puzzles with spe-
cific difficulty levels we were able to develop classification functions for specific difficulty
ratings. We then used the functions we developed to ensure that our algorithm gener-
ated puzzles with difficulty levels analogous to those currently published. We also sought
out to measure and reduce the computational complexity of the generation and metric
measurement algorithms.

Finally, we worked to analyze and reduce the complexity involved in generating puzzles
while maintaining the ability to choose the difficulty of the puzzles generated. To do so,
we implemented a profiler and performed statistical hypothesis testing to streamline the
algorithm .

Page 2 of 62 MCM 2008 Team #3780

Contents

1 Introduction 3
1.1 Statement of Problem 3
1.2 Relevance of Sudoku 3
1.3 Goals 3
1.4 Rules of Sudoku 3
1.5 Terminology and Notation 3
1.6 Indexing 4
1.7 Formal Rules of Sudoku 5
1.8 Example Puzzles 5

2 Background 5
2.1 Common Solving Techniques 5

2.1.1 Naked Pair 5
2.1.2 Naked Triplet 5
2.1.3 Hidden Pair 6
2.1.4 Hidden Triplet 6
2.1.5 Multi-Line 6

2.2 Previous Works 7
2.2.1 SudokuExplainer 7
2.2.2 QQWing 7
2.2.3 GNOME Sudoku 7

3 Metric Design 10
3.1 Overview 10
3.2 Assumptions 10
3.3 Mathematical Basis for WNEF . . . 10

3.3.1 Complexity 10

4 Metric Calibration and Testing 11
4.1 Control Puzzle Sources 11
4.2 Testing Method 12

4.2.1 Defining Difficulty Ranges . . 12
4.2.2 Information Collection 12
4.2.3 Statistical Analysis of Con-

trol Puzzles 12
4.3 Choice of Weight Function. 12

5 Generator Algorithm 12
5.1 Overview 12
5.2 Detailed Description 14

5.2.1 Completed Puzzle Generation 14
5.2.2 Cell Removal 14
5.2.3 Uniqueness Testing 15

5.3 Pseudocode 15
5.3.1 Completed Board Generation 15
5.3.2 Random Masking 16
5.3.3 Tuned Masking 17

5.3.4 Uniqueness Testing 17
5.4 Complexity Analysis 18

5.4.1 Parameterization 18
5.4.2 Complexity of Completed

Puzzle Generation 18
5.4.3 Complexity of Uniqueness

Testing and Random Filling . 18
5.4.4 Profiling Method 18
5.4.5 WNEF vs Running Time . . . 19

5.5 Testing 19
5.5.1 WNEF as a Function of De-

sign Choices 19
5.5.2 Hypothesis Testing 19

6 Strengths and Weaknesses 19

7 Conclusions 21

References 21

1 Source Code 23

2 Screenshots of Puzzle Generator 62

List of Figures

1 Demonstration of indexing schemes. 6
2 Puzzle generated by WebSudoku

(ranked as “Easy”). 6
3 Top 1465 Number 77. 7
4 An example of a hand-made Nikoli

puzzle. 7
5 Example of the Naked Pair rule. . . 8
6 Example of the Naked Triplet rule. . 8
7 Example of the Hidden Pair rule. . . 8
8 Example of the Hidden Triplet rule. 9
9 Example of the Multi-Line rule. . . . 9
10 Examples of choice histograms. . . . 11
11 WNEF for control puzzles by diffi-

culty. 13
12 WNEF correlations for various

weighting functions. 13
13 Running time as a function of the

obtained WNEF. 20
14 WNEF as a function of allowed fail-

ures. 20
15 Screenshots of puzzle generator. . . . 62

Page 3 of 62 MCM 2008 Team #3780

1 Introduction

1.1 Statement of Problem

We set out to design an algorithm that would con-
struct unique sudoku puzzles of various difficul-
ties as well as to develop metrics by which to mea-
sure the difficulty of a given puzzle. In particular,
our algorithm must admit at least four levels of
difficulty while minimizing its level of complex-
ity.

1.2 Relevance of Sudoku

We feel that this problem is relevant and of inter-
est, since the game of sudoku is inherently math-
ematical, and offers rich opportunities to explore
mathematical techniques. Indeed, the problem is
NP-Complete [3], and yet manages to be some-
what accessible to casual analysis. Moreover,
by developing techniques for use with a problem
over which we have such complete control, we
may expand into other and more practical prob-
lems. In fact, sudoku is essentially an exercise
in compression, and so techniques for generat-
ing difficult puzzle instances lead directly to real-
izations about information content and entropy.
We, however, shall restrict our focus directly to
the problem at hand, and be content to leave
these reasons, along with sudoku’s entertainment
value, as our motivation for exploring the game.

1.3 Goals

Our goal is to create an algorithm that will pro-
duce sudoku puzzles. In doing so, and to meet the
conditions of the proposed problem (section 1.1),
we aim to create an algorithm with the following
properties:

• Will only create valid puzzle instances (no
contradictions, and admitting a unique so-
lution).

• Can generate puzzles at any of four differ-
ent difficulty levels (easy, medium, hard and
evil1).

• Produces puzzles in a reasonable amount of
time, regardless of the chosen difficulty.

Such a set of goals could easily lead to a project
of an unmanageable scope. Thus, we explicitly do
not aim for any of the following properties:

• Attempt to “force” a particular solving
method upon players.

• To be the best available algorithm for the
task of making exceedingly difficult puzzles.

• Impose symmetry requirements .

1.4 Rules of Sudoku

The game of sudoku is played upon a 3 × 3 grid
of blocks, each of which is a 3 × 3 grid of cells.
Each cell can have a value of 1 through 9, sub-
ject to a simple constraint, or may be empty.
The object of the game is to, given a partially-
filled out grid called a puzzle, use logical infer-
ence to place values in all of the empty cells such
that the constraints are upheld. It is fully pos-
sible to create a puzzle which has no solution
(it contradicts itself, forcing the player to violate
a constraint), or which has multiple solutions.
We shall impose the additional requirement upon
puzzles that they admit exactly one solution each.

When properly filled out, no row, column or
block may have two cells with the same value.
This simple constraint is what allows all of the
inference to work. Some examples of puzzles and
their solutions may be found in Section 1.8. For
more details and a complete tutorial, please see
[1].

1.5 Terminology and Notation

It is difficult to discuss our solution to the pro-
posed problem without understanding some com-
mon terminology. Moreover, since we will apply
more mathematical formalism here than in most
documents dealing with sudoku, it will be helpful
to introduce notational conventions.

Assignment A tuple (x,X) of a value and a cell.
If a puzzle contains an assignment (x,X),
we say that X has the value x, that X maps
to x, or that X 7→ x.

1This term was chosen for traditional reasons, as many sources prefer to use references to immorality to measure diffi-
culty.

Page 4 of 62 MCM 2008 Team #3780

Candidates A set of those values which may
be assigned to a square. As more informa-
tion is taken into account, the set is reduced
until only one candidate remains, at which
point it becomes the value of the cell. We
denote the set of candidates for some cell X
by X?.

Cell A single square within a sudoku puzzle,
which may have one of the integer values
from 1 to 9. We denote cells using upper-
case italic serif letters: X, Y , Z.

Block One of the nine 3 × 3 squares within the
puzzle. The boundaries of these blocks are
denoted by thicker lines on the puzzle’s grid.
It is important to note that in sudoku, no
two blocks overlap (share common cells).
There are variants of sudoku, such as hy-
persudoku in which this occurs, but we will
focus our attention on the traditional rules.

Grouping A set of cells in the same row, col-
umn or block. We represent groupings with
uppercase boldface serif letters: X, Y, Z.
We refer unambiguously to the row group-
ings Ri, the column groupings Cj and the
block groupings Bc, following the indexing
scheme in section 1.6. The set of all group-
ings will be denoted G.

Metric We call a function m : P → R (assigning
a real number to each valid puzzle) a metric
if it provides information about the relative
difficulty of the puzzle.

Puzzle A 9 × 9 matrix of cells, with at least one
empty and at least one filled cell. For our
purposes, we impose the additional require-
ment that all puzzles have exactly one so-
lution. We denote puzzles by boldface cap-
ital serif letters: P, Q, R. Since this no-
tation conflicts with that for groupings, we
will always denote that a variable is a puz-
zle. Moreover, we refer to cells belonging to
a puzzle: X ∈ P. Finally, in the rare in-
stance that we wish to denote the set of all
valid puzzles, we shall do so with a double-
struck P: P.

Representative The upper-left cell in each
block is that block’s representative. For ex-
ample, the cell in the 5th row and 5th col-

umn has as its representative the cell at the
fourth row and column.

Restrictions In some cases, it is more straight-
forward to discuss which values a cell can-
not be assigned to than to discuss the set of
candidates. Thus, the restrictions set X! for
a cell X is defined as V\X?.

Rule An algorithm which accepts a puzzle P
and produces either a puzzle P′ represent-
ing strictly more information (more restric-
tions have been added via logical inference
or cells have been filled in) or some value
that indicates that the rule failed to ad-
vance the puzzle towards a solution.

Solution A set of assignments to all cells in a
puzzle such that all groupings have exactly
one cell assigned to each value.

Value A symbol that may be assigned to a
cell. For our purposes, all sudoku puzzles
use the traditional numeric value set V =
{1, 2, 3, 4, 5, 6, 7, 8, 9}. This can be confusing
at times, since we will be discussing other
numbers, but we choose to do so for the sake
of convention. A value is denoted by a lower
case sans serif letter: x, y, z.

1.6 Indexing

Define the following indicies using the terminol-
ogy above (section 1.5). As a convention, all indi-
cies will start with zero for the first cell or block.

c : block number
k : cell number within a block
i : row number
j : column number
i′ : representative row number
j′ : representative column number

Page 5 of 62 MCM 2008 Team #3780

These indicies are related by the following func-
tions:

c (i, j) =
j

3
+

⌊
i

3

⌋
· 3

i (c, k) = 3
⌊ c

3

⌋
+

⌊
k

3

⌋
j (c, k) = (c mod 3) · 3 + (k mod 3)

i′ (c) = 3
⌊ c

3

⌋
j′ (c) = (c mod 3) · 3

i′ (i) = 3
⌊

i

3

⌋
j′ (j) = 3

⌊
j

3

⌋
Figure 1 demonstrates how the rows, columns
and blocks are indexed, as well as the idea of a
block representative. In the third sudoku grid,
the representatives for each block are denoted
with an “r”.

1.7 Formal Rules of Sudoku

We may now formally state the rules of sudoku
that restrict allowable assignments using the no-
tation developed thus far:

(∀G ∈ G ∀X ∈ G) X 7→ v ⇒ @Y ∈ G : Y 7→ v

Applying this sort of formalism to the rules of su-
doku will allow us to make strong claims about
solving techniques later, and so it is useful intro-
duce this notation for the rules.

1.8 Example Puzzles

The rules alone do not explain what a sudoku
puzzle looks like, and so we have included a few
examples of well-crafted sudoku puzzles. Figure
6 shows a puzzle ranked as “Easy” by WebSudoku
[4].

By contrast, Figures 7 and 7 show the results
of two different approaches to generating difficult
puzzles: the first one was computer generated as
part of an experiment in minimal sudoku puz-
zles, whereas the second was hand-made by the
authors at Nikoli, the company most famously
associated with sudoku. It is interesting that
two such completely different approaches result
in very similar looking puzzles.

2 Background

2.1 Common Solving Techniques

As with any activity, several sets of techniques
have emerged to help solve sudoku puzzles. We
collect some here so that we may refer to them in
our own development. In all of the techniques be-
low, we assume that the puzzle being solved has
a single unique solution. These techniques and
examples are adapted from [10] and [2].

2.1.1 Naked Pair

If, in a single row, column or block grouping A,
there are two cells X and Y each having the same
pair of candidates X? = Y ? = {p, q} , then those
candidates may be eliminated from all other cells
in A. To see that we can do this, assume for the
sake of contradiction that there exists some cell
Z ∈ A such that Z 7→ p, then X 67→ p, which im-
plies that X 7→ q. This in turn means that Y 67→ q,
but we have from Z 7→ p that Y 67→ p, leaving
Y ? = ∅. Since the puzzle has a solution, this is a
contradiction, and Z 67→ p.

As an example of this arrangement is shown
in figure 5. The cells marked X and Y sat-
isfy X? = Y ? = {2, 8}, and so we can remove
both 2 and 8 from all other cells in R8. That is,
∀Z ∈ (R8\ {X, Y }) : 2, 8 /∈ Z?.

2.1.2 Naked Triplet

This rule is analogous to the Naked Pair rule (sec-
tion 2.1.1), but instead it involves three cells in-
stead of two. Let A be some grouping (row, col-
umn or block), and let X, Y, Z ∈ A such that
the candidates for X, Y and Z are drawn from
{t, u, v}. Then, by exhaustion, there is a one-to-
one set of assignments from {X, Y, Z} to {t, u, v}.
Therefore, no other cell in A may map to a value
in {t, u, v}.

An example of this is given in Figure 6. Here,
we have marked the cells {X, Y, Z} accordingly
and consider only block 8. In this puzzle, X? =
{3, 7}, Y ? = {1, 3, 7} and Z? = {1, 3}. Therefore,
we must assign 1, 3 and 7 to these cells, and may
remove them from the candidates for those cells
marked with an asterisk.

Page 6 of 62 MCM 2008 Team #3780

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 r r r
0 1 2

r r r
3 4 5

r r r
6 7 8

Figure 1: Demonstration of indexing schemes.

7 8
3 2 4 5
8 7 4 5 9 3 1

8 1
9 2 3 5 8 4

7 9
4 6 3 1 9 8 5
8 1 4 6

6 9

Figure 2: Puzzle generated by WebSudoku (ranked as “Easy”).

2.1.3 Hidden Pair

Informally, this rule is conjugate to the Naked
Pair rule (section 2.1.1). Here, we also consider
a single grouping A and two cells X, Y ∈ A, but
the condition is that there exist two values u and v
such that at least one of {u, v} is in each of X? and
Y ?, but such that for any cell Q ∈ (A\ {X, Y }),
u, v /∈ Q?. Thus, since A must contain a cell with
each of the values, we can force X?, Y ? ⊆ {t, u, v}.

An example of this is given in Figure 7. We
focus on the grouping R8, and label X and Y in
the puzzle. Since X and Y are the only cells in
R8 whose candidate lists contain 1 and 7, we can
eliminate all other candidates for these cells.

2.1.4 Hidden Triplet

As with the Naked Pair rule (section 2.1.1), we
can extend the Hidden Pair rule (section 2.1.3) so
that it applies to three cells. In particular, let A
be a grouping, and let X, Y, Z ∈ A be cells such
that at least one of {t, u, v} is in each of X?, Y ?
and Z? for some values t, u and v. Then, if for
any other cell Q ∈ (A\ {X, Y, Z}), t, u, v /∈ Q?, we
claim that we can force X?, Y ?, Z? ⊆ {t, u, v}.

An example of this is shown in Figure 8, where
in the grouping R5, only the cells marked X, Y

and Z can take on the values of 1, 2 and 7. We
would thus conclude that any candidate of X, Y
or Z that is not either 1, 2 or 7 may be eliminated.

2.1.5 Multi-Line

We will develop this technique for columns, but
it works for rows with trivial modifications. Con-
sider a three blocks Ba, Bb and Bc such that they
all intersect the columns Cx, Cy and Cz. If for
some value v, there exists at least one cell X in
each of Cx and Cy such that v ∈ X? but that there
exists no such X ∈ Cz, then we know that the cell
V ∈ Bc such that V 7→ v satisfies V ∈ Cz. Were
this not the case, then we would not be able to
satisfy the requirements for Ba and Bb.

An example of this rule is shown in Figure 9.
In that figure, cells that we are interested in, and
for which 5 is a candidate, are marked with an
asterisk. We will be letting a = 0, b = 6, c = 3,
x = 0, y = 1 and z = 2. Then, note that all of
the asterisks for blocks 0 and 6 are located in the
first two columns. Thus, in order to satisfy the
constraint that a 5 appear in each of these blocks,
block 0 must have a 5 in either column 0 or 1,
while block 6 must have a 5 in the other column.
This leaves only column 2 open for block 3, and so
we can remove 5 from the candidate lists for all

Page 7 of 62 MCM 2008 Team #3780

7 4
2 7 8

3 8 9
5 3

6 2 9
1 7 6

3 9
3 4 6

9 1 5

Figure 3: Top 1465 Number 77.

4 9 8
3 5 1

7 4 2
3 8 1

5 9
6 1 2
8 3 1

2 4 5
6 1 7

Figure 4: An example of a hand-made Nikoli puzzle.

of the cells in column 0 and block 3.

2.2 Previous Works

2.2.1 SudokuExplainer

The SudokuExplainer application [6] generates
difficulty values for a puzzle by trying each in a
battery of solving rules until the puzzle is solved,
then finding out which rule had the highest diffi-
culty value. These values are assigned arbitrarily
in the application.

2.2.2 QQWing

The QQWing application [8] is an efficient puz-
zle generator that makes no attempt to analyze
the difficulty of generated puzzles beyond catego-
rizing them into one of four categories. QQWing
has the unique feature of being able to print out
step-by-step guides for solving given puzzles.

2.2.3 GNOME Sudoku

Included with the GNOME Desktop Environ-
ment, GNOME Sudoku is a desktop application
for playing the game. It is written in Python,
and distributed in source form, and so one may
directly call the generator routines that it uses.

The application assigns a difficulty value on the
range from zero to one to each puzzle, and rather
than tuning the generator to requests, simply re-
generates any puzzle outside of a requested dif-
ficulty range. It was thus not useful as a model
of how to write a tunable generator, but was very
helpful for quickly generating large amounts of
control puzzles. We used a small Python script,
shown on page 61, to extract the puzzles.

Page 8 of 62 MCM 2008 Team #3780

1 2 4
8 4

6 8 3 9
3 1 4 5 2 7

2 3 8 1 5 4
4 5 8 1 3 2

9 2 4 1 5 6
5 8 3 6 4 9

X 9 7 5 Y

Figure 5: Example of the Naked Pair rule.

4 9 1 8
6 5 2 8 2
8 9 1 3 2 5
5 1 2 4

9 4 7 5 1 6 2
6 7 4 2 8 1 5 3 9

4 6 2 X 5 Y
3 5 8 2 * 6

2 6 7 * * Z

Figure 6: Example of the Naked Triplet rule.

4 9 5 8 6
6 5 2 7 8 3
8 9 3 6 5

8 4 2 7
2 6 5 7

7 4 8 9 2 1 6
8 7 9 6 2

2 9 1 3
4 6 X 3 Y

Figure 7: Example of the Hidden Pair rule.

Page 9 of 62 MCM 2008 Team #3780

8 9 5 4 X 6 2 3
1 6 3 2 5 4 7
2 7 4 5 1 9 8

8 4 Y 5
5 2 3 4 1

4 3 5 6 2
9 1 7 5 6 2 4
3 2 8 4 7 5 6
5 4 6 Z 1 9

Figure 8: Example of the Hidden Triplet rule.

* * 9 3 6
* 3 6 1 4 8 9
1 8 6 9 3 5
* 9 * 8
* 1 * 9
* 6 8 9 1 7
6 * 1 9 3 2
9 7 2 6 4 3
* * 3 2 9

Figure 9: Example of the Multi-Line rule.

Page 10 of 62 MCM 2008 Team #3780

3 Metric Design

3.1 Overview

The metric that we designed to test the difficulty
of puzzles was the weighted normalized ease func-
tion (WNEF), and was based upon the calculation
of a normalized choice histogram.

As the first step in we first step in calculat-
ing this metric, we count the number of choices
for each empty cell’s value. Next, we compile
these values into a histogram with nine bins. Fi-
nally, we multiply these elements by empirically-
determined weights and sum the result to obtain
the WNEF. The implementations of this calcula-
tion process are shown on pages 28 and 42.

3.2 Assumptions

The design of the WNEF metric was predicated
on two basic and important assumptions:

• We assumed that difficulty of a puzzle ex-
ists; that is, that there exists some objective
standard by which we may rank puzzles in
order of difficulty.

• We assumed that the difficulty of a puz-
zle is roughly proportional to the number
of choices that a solver may make without
directly contradicting any of the basic con-
straints outlined in Sections 1.4 and 1.7.

In addition, in testing and analyzing this metric,
we included a third assumption:

• We assume that the difficulty of the indi-
vidual puzzles are independently and iden-
tically distributed over each source.

3.3 Mathematical Basis for WNEF

For this metric, we started by defining the choice
function of a cell c (X):

c (X) = |X?| (1)

That is, the choice function indicates the number
of possible choices that, in the worst case, must be
explored. This function is only useful for empty
cells, and so it is convenient to introduce a way

of referencing all cells in a puzzle P which are
empty:

E (P) = {X ∈ P | ∀v ∈ V : X 67→ v}

By binning each empty cell based on the choice
function, we obtain the choice histogram ~c (P) of
a puzzle P.

cn (P) = |{X ∈ P | c (X) = n}| = |{X ∈ P | |X?| = n}|
(2)

Examples of these histograms with and without
the mean control histogram (obtained from the
control puzzles described in Section 4.1) removed
may be found in Figures 10 (a) and (b).

From this histogram, we obtain the value of the
(unnormalized) weighted ease function, wef (P),
by convoluting the histogram with a weight func-
tion w (n):

wef (P) =
9∑

n=1

w (n) · cn (P) (3)

where cn (P) is the nth value in the histogram
~c (P). This function, however, has the absurd
trait that removing information from a puzzle re-
sults in more empty cell, which in turn causes the
function to strictly increase. We therefore calcu-
late the weighted and normalized ease function:

wnef (P) =
wef (P)

w (1) · |E (P)|
(4)

This calculates the ratio of the weighted ease
function to the maximum value that it can have
(all empty cells completely determined, but have
not been filled in; that is, all cells may be as-
signed by elimination alone). We experimented
with three different weight functions, before de-
ciding upon the exponential weight function. This
decision was made in response to tests performed
during metric calibration, and thus a full discus-
sion of why we chose that particular weight func-
tion will be deferred to Section 4.2. Whenever
the choice of weighting function is ambiguous, we
shall indicate the choice with a subscript exp, sq
or lin corresponding to the exponential, squared
and linear functions.

3.3.1 Complexity

Essentially, the level of complexity involved in
finding the WNEF is the same as that of find-
ing the choice histogram (normalized or not). To

Page 11 of 62 MCM 2008 Team #3780

(a) Original histograms.

0 2 4 6 8

−
5

0
5

10

Number of Choices

brown easy
blue medium
green hard
red evil

(b) Histograms with mean removed.

Figure 10: Examples of choice histograms.

do that, we need to find the direct restrictions
on each cell by examining the row, column and
block that it is located in. Doing so in the least
efficient way that is still reasonable, we look at
each of the 8 other cells in those three groupings,
even though some are checked multiple times, re-
sulting in 24 comparisons per cell. For a total of
81 cells, this results in 1,944 comparisons being
made. Of course, we only check when the cell is
empty, and so for any puzzle, the number of com-
parisons is strictly less than 1,944. That bound is
constant for all puzzles, and so we conclude that
finding the WNEF is a constant time operation
with respect to the puzzle difficulty.

4 Metric Calibration and Testing

4.1 Control Puzzle Sources

In calibrating and testing the metrics, we used
published puzzles from several sources and at
several levels of difficulty, as labeled by their au-
thors. The puzzles we obtained include the fol-
lowing:

• WebSudoku [4]

– 10 Easy puzzles.

– 10 Medium puzzles.

– 10 Hard puzzles.

– 10 Evil puzzles.

• Games World of Sudoku [7]

– 10 ? puzzles.

– 10 ?? puzzles.

– 10 ? ? ? puzzles.

– 10 ? ? ?? puzzles.

• GNOME Sudoku [5]

– 2000 Hard puzzles.

• “top2365” 2

– 2365 Evil puzzles.
2This list of puzzles was obtained from [9] and named by regulars of the Sudoku Player’s Forum. By forum tradition, lists

of test puzzles tend to get short and minimal names. Other names for lists include “topn87” and “subig20.”

http://www.sudoku.com/boards/viewforum.php?f=11&sid=a40aab87fec04fdedfbe116cda29e6fc

Page 12 of 62 MCM 2008 Team #3780

4.2 Testing Method

4.2.1 Defining Difficulty Ranges

In analogy with published puzzle collections, we
separated our control puzzles into four broad
ranges of difficulty: easy, medium, hard and evil.
For the sake of brevity, we will often refer to these
by the indicies 1, 2, 3 and 4, respectively.

4.2.2 Information Collection

We used the control puzzles described in 4.1 to
calibrate and the metrics by running programs
designed to calculate the metrics on each puzzle.
The information collected from the program for
each puzzle Pi included:

• |E (Pi)|, the total number of empty cells in
Pi.

• C (Pi) =
∑

X∈Pi
X?, the number of possible

choices for all cells.

• The choice histogram ~c defined in Equation
2.

4.2.3 Statistical Analysis of Control Puzzles

When looking for a possible correlation between
the data and the difficulty level, we found that
the number of empty cells and number of total
choices lacked any correlation. However, when
we looked at the choice histograms for each puz-
zle, we noticed trends in the data. In easier puz-
zles, there seemed to be more cells with fewer
choices than in the more difficult puzzles (Figure
10).

We then calculated the wnef (P) for the control
puzzles to try to further explore the relationship
and found a clear negative correlation between
the difficulty level of P and wnef (P) for the con-
trol puzzles (Figure 11). This leads us to intro-
duce wnef (d) as the mean WNEF of all control
puzzles having difficulty d.

In order to conclude that the WNEF produces
distinct difficulty levels, which is to say that
wnef (d) 6= wnef (d + 1) for d ∈ {1, 2, 3}, we con-
ducted a hypothesis test for d = 1, 2, 3 with the
following hypotheses:

H0 : wnef (d) = wnef (d + 1)
Ha : wnef (d) 6= wnef (d + 1)

To test these hypotheses, we used the following
test statistic:

t∗ =

(
wnef (d)−wnef (d + 1)

)
√

s2
d

nd
+

s2
d+1

nd+1

where nd is the number of control puzzles having
difficulty d and where s2

d is the sample variance
of the WNEF, over control puzzles at level d (this
data is shown in Table 1). With a significance
level of α = 0.0025, we performed a hypothesis
test using the Student’s t distribution, and found
that t∗ > tα. Thus, we rejected the null hypothe-
sis for each of d = 1, 2 and 3, and concluded that
the WNEF is able to distinguish different diffi-
culty levels.

4.3 Choice of Weight Function.

As alluded to in Section 3.3, we tried three differ-
ent weighting functions for finding WNEF values:
exponential, quadratic and linear.

wexp (n) = 29−n

wsq (n) = (10− n)2

wlin (n) = (10− n)

where n is the number of choices for a cell. We
discovered that regardless of the type of weight-
ing function we used, the graph showing the
weights of the puzzles vs. difficulty all looked
very similar, in that the all produced a strong
negative correlation (Figure 12).

We concluded that we could choose any of the
three weighting functions, as long as we used the
same function throughout. We arbitrarily chose
wexp.

5 Generator Algorithm

5.1 Overview

The generator algorithm works by creating first
a valid solved sudoku board, and then “punch-
ing holes” in the puzzle by applying a mask.
The solved puzzle is created via an efficient
backtracking algorithm, and the masking is per-
formed via the application of various strategies.
A strategy is simply an algorithm which outputs
cell locations to attempt to remove, based on some
goal. After any cell is removed, the puzzle is

Page 13 of 62 MCM 2008 Team #3780

d 1 2 3 4

µ̂d = E (y) 0.2680756 0.1108268 0.09244832 0.04078146

σ̂2
d = s2 0.00096963 0.000502135 0.000255063 0.000125557

Table 1: Estimated means and variances of control WNEF metrics.

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
05

0.
10

0.
15

0.
20

0.
25

Difficulty Level

W
N

E
F

 V
al

ue

Figure 11: WNEF for control puzzles by difficulty.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Difficulty Level

W
N

E
F

 V
al

ue

Blue Linear
Green Quadratic
Red Exponential

Blue Linear
Green Quadratic
Red Exponential

Blue Linear
Green Quadratic
Red Exponential

Figure 12: WNEF correlations for various weighting functions.

Page 14 of 62 MCM 2008 Team #3780

checked to ensure that it still admits a unique
solution. If this test succeeds, another round is
started. Otherwise, the board’s mask is reverted,
and a different strategy is consulted. Once all
strategies have been exhausted, we do a final
“cleanup” phase where additional cells are re-
moved systematically, then return the completed
puzzle. For harder difficulties, we introduce an-
nealing.

5.2 Detailed Description

As mentioned, our algorithm for generating a de-
terministic Sudoku board consists of two stages.
We first generate a solution, and then remove
cells until we reach the desired difficulty, as mea-
sured by the WNEF metric. Also important is the
uniqueness test algorithm used heavily in the pro-
cess of removing cells..

5.2.1 Completed Puzzle Generation

Completed puzzles are generated via a method
called backtracking. A solution is generated via
some systematic method until a contradiction is
found. At this point the algorithm reverts back to
a previous state and attempts to solve the prob-
lem via a slightly different method. All methods
should be attempted in a systematic manner. If a
valid solution is found, then we are done.

Backtracking can be a slow process, and as
such one must make care to do so in a smart
and efficient manner. In order to gain better effi-
ciency, we take the 2D sudoku board and view it
as a 1D list of rows. The problem now reduced to
that of filling rows with values, and if we cannot,
then we backtrack to the previous row. We are
finished if we complete the last row.

This recasting of the problem also simplifies
the constraints; with a little care we can make
it so that we only need concern ourselves with
the values in each column, and the values in the
three clusters (or blocks) that the current row
intersects. These two constraints may be main-
tained by updating them each time a new value
is added to a row.

There exists, of course, implementation details
that one would need to iron out. To see our imple-
mentation, see Section 5.3.

5.2.2 Cell Removal

Having a solved puzzle is nifty, yes, however it
is not very useful. In order to change this into a
puzzle that is actually entertaining to solve we
perform a series of removals that we shall call
masking.

The basic idea behind masking is that one
or more cells are removed from the puzzle (or
masked out of the puzzle) and then the puzzle is
checked to ensure that it still has a unique so-
lution. If this is not the case, then the masking
action is undone (or the cells are added back into
the puzzle).

Random masking is one of the simplest and
fastest forms of masking. Every cell is masked in
turn, but in random order. Every cell that can be
removed is, resulting in a minimal puzzle. This is
very fast and has potential to create any possible
minimal puzzle, though with differing probabil-
ity.

Tuned masking is slower and cannot create a
puzzle any more difficult then that which can
be gained with Random Masking (though easier
puzzles can be created if they are not minimal).
The idea behind tuned masking is that we can in-
crease the probability that a given type of puzzle
is generated. This depends heavily on probabil-
ity, and hence takes some tweaking to make ac-
curate. It can be done, however, such that the de-
sired type of puzzle will be generated the majority
of the time. As such, it is possible to ensure the
generation of the puzzle type in question by re-
generating the given type is generated. This has
a terrible worst case. however probabilistic anal-
ysis may be used to show that, assuming your
tuning is configured well, the probability of not
gaining the desired puzzle type on a second try is
very small.

The issue here is something I like to call bleed-
ing. A given tuning, when ran many times, will
produce a probability curve. In all likelihood, the
produced puzzle will be of the type that consti-
tutes the mean of the curve. However, should the
puzzle lie far from these mean, on a tail, then it
could overlap with a different tuning’s curve and
hence give you a conflict (such that you attempt to
generate a hard puzzle and result in an evil puz-
zle, for example). Spacing the tunings out and
minimizing their curve’s spread is crucial to cre-
ating accurate tunings.

Page 15 of 62 MCM 2008 Team #3780

Behind the tuning algorithm is a series of
strategies. A strategy is simply a function that
examines the board and returns the cell it would
like to try to remove. This should be based on
some rule, perhaps it is in a cluster that has a lot
of other filled cells in it, or its value is one that is
currently very common. A set of these strategies
defines how a tuning attempts to reduce a board.

The second stage of tuning is performed right
after a value is removed from the board. This is
that the board is evaluated to see if it is of the
type that the tuning is seeking, and then the tun-
ing’s strategy is adjusted accordingly. In our ex-
ample, if a board is found to be too difficult, then
we might add back in a cell that will decrease the
overall difficulty.

For our tuning we are seeking a board with a
given WNEF. As such we apply strategies that
will reduce the WNEF until we have reduced it
sufficiently. Strategies that should have a large
effect on the WNEF should not be applied if a low
WNEF is not being sought. In the case that we
reach a minimum WNEF that is not low enough,
we can use a method from mathematical opti-
mization known as simulated annealing. Here we
add some number of values back into the board
and then optimize from there, in hopes that do-
ing so will allow us to reach a lower minimum.
State saving allows us to then, after a time, re-
vert to the board with the lowest WNEF. Experi-
mentally we observed that annealing allowed us
to produce puzzles with lower WNEF values than
we could without applying the technique. The de-
tails of this test are given in Section 19.

5.2.3 Uniqueness Testing

In order to ensure we generate boards with only
one solution, we must be able to test if this con-
dition is true. There is a fast and a slow way of
doing this. The fast way will find the uniqueness
of any board which can be solved using logic. Any
board which does not confirm to the rules of logic,
but my still have a single solution, will fail the
fast test. The slow test can determine this for
any board.

The fast solution utilizes the two basic logic
rules of Sudoku solving: Hidden Single and
Naked Single. That is that any cell with only
one possible value can be filled in with that value,

and and any cell who is the only cell in some ref-
erence frame (such as its cluster, row, or column)
with the potential of some value may be filed in
with that value. These two logic processes are
performed on a board until either the board is
solved indicatng a unique solution, or no logic ap-
plies which indicates the need to guess and hence
a high probability that the board has multiple so-
lutions. If this test succeeds, then we know that
the board always has a solution, as we generated
the board from a solution. On the other hand, it
may produce false negatives, and reject a board
with a unique solution.

The slow solution is to try every valid value in
some cell, and ask if the board is unique for each.
If more then one value produces a unique result
then the board has more then one solution. This
solution calls itself recursively to determine the
uniqueness of the board with the added values.
The advantage of this solution is that it is com-
pletely accurate, and will not result in false neg-
atives.

A hybrid method is to utilize the slow solution
in the case that the fast one fails. A further op-
timization is to restrict the number of times the
slow solution may be used. This is similar to say-
ing “if we had to guess more then twice, then we
reject the board.” In the interest of expedience,
it is the hybrid method that we adopt here. This
allows us to prevent a large amount of false neg-
atives while still offering quick solutions.

5.3 Pseudocode

5.3.1 Completed Board Generation

Given an empty 9 × 9 array that we shall call
“board”, do the following:

1. Fill the top row of the board with a random
permutation of the sequence 1 through 9.

2. Initialize a 9 element array of lists. This
shall hold all numbers placed so far in each
column.

3. Initialize a 3 element array of lists. This
shall hold all numbers placed in the three
clusters that the current row (right now,
this is the first row) spans.

4. Add the values of the first row to their re-
spective column lists.

Page 16 of 62 MCM 2008 Team #3780

5. Add the values of the first row to their re-
spective cluster lists.

6. Call a recursive function, and pass it the fol-
lowing:

• A parameter directing it to fill the sec-
ond row.

• The columns array.

• The clusters array.

The recursive function then performs the bulk of
the algorithm:

1. Create an array containing a permutation
of the sequence 1 through 9, which we shall
call this “numbers.”

2. Create copies of the columns array, the clus-
ters array, and of the numbers array, so that
we may backtrack later.

3. If the requested line is the 10th line (off the
end of the board), then we are done, and re-
turn true.

4. Initialize an empty “slack” array, which
shall hold those values whose being placed
caused a violation of constraints.

5. Move to the first column.

6. Repeat the following:

a) Pop a value off of the “numbers” array.

b) If this number is not in the clusters list
for this column’s cluster, and is not in
the columns list for this column, then:

i. Set this board location to this num-
ber.

ii. Add this number to the cluster and
column lists that it applies to.

iii. Append all numbers in the “slack”
array to the “numbers” array.

iv. Move to the next column.

c) Else we add the number to the slack ar-
ray.

d) If we have passed the last column,
then:

i. If moving to the next line moves us
passed our current three clusters
(i. e. (line+1)%3 is 0) then recurse
with a reset clusters list and cur-
rent columns list and incremented
line number.

ii. Else recurse with current clusters
list and current columns list and
incremented line number.

iii. If recursion returned true, return
true. Otherwise go on.

e) If there are no numbers left (all num-
bers are slack, or recursion failed):

i. If we have shifted 9 or more times,
return false.

ii. Recall all of our saved data.
iii. Delete all values from this row.
iv. Move to first column.
v. Erase the slack array.

vi. Cycle the numbers array, so the
first item becomes last and all
other items shift accordingly.

vii. Increment times shifted.

See also ?? and 40

5.3.2 Random Masking

Given a 9× 9 array that we shall call “board”:

1. Initialize a 9 × 9 array of booleans to true,
which we shall call the “mask”.

2. Initialize a list of 81 points with one point
for every cell in the board.

3. Randomly permute the array of points.

4. For each element in this array:

a) Set the mask at that point to false.
This will result in that value being con-
sidered not part of the board (or not
given).

b) Test if this new puzzle is uniquely solv-
able.

c) If not, set the mask at that point back
to true.

Page 17 of 62 MCM 2008 Team #3780

5.3.3 Tuned Masking

Given a 9× 9 array that we shall call “board”:

1. Initialize a 9 × 9 array of booleans to true,
call this the “mask”.

a) Repeat the following until we are done:
i. Apply some strategy in order to ob-

tain the coordinates of a cell to re-
move.

ii. Set the mask at those coordinates
to false. This will result in that
value being considered not part of
the board (or not given).

iii. Test if this new puzzle is uniquely
solvable.

iv. If not, set the mask at those coordi-
nates back to true and select a new
strategy.

v. Calculate board statistics and test
to see if we match them. In our
case, this is the WNEF.

vi. If we are too high, continue from
(a).

vii. If we are too low, repeat the follow-
ing a small number of times:
A. Apply an annealing function to

gain the location of a cell to
add.

B. Set the mask at that location to
true.

viii. If we are within the desired range,
we are done.

5.3.4 Uniqueness Testing

Given a 9 × 9 array that we shall call “board”, a
9× 9 array that we shall call “mask”, and a num-
ber of times to guess:

1. Fill in a 9×9 array with lists such that each
lists represents the value choices available
at that cell.

2. Repeat the following:

a) If mask contains no false values, return
true.

b) If there exists any list in the choices ar-
ray with only one value:

i. Set the mask at that position to
true.

ii. Continue from 2.

c) Look for a value in the choices array
that appears only once in a cluster, if
found:

i. Set the mask at that position to
true.

ii. Continue from 2.

d) Look for a value in the choices array
that appears only once in a row, if
found:

i. Set the mask at that position to
true.

ii. Continue from 2.

e) Look for a value in the choices array
that appears only once in a column, if
found:

i. Set the mask at that position to
true.

ii. Continue from 2.

f) If the number of times we are allowed
to guess is not 0:

i. Locate the blank cell with the least
number of choices.

ii. Set a flag to false.

iii. For each choice:

A. Set that cell of the board to that
choice and set that cell of the
mask to true.

B. Recurse, decrementing the
number of allowed guesses.

C. If the the result is true, and the
flag is true, return false.

D. Else if the result was true, set
the flag to true.

iv. If the flag is true, return true: we
have found a unique solution.

g) Return false: we know that the board
is most likely not unique.

Page 18 of 62 MCM 2008 Team #3780

5.4 Complexity Analysis

5.4.1 Parameterization

Traditionally, when one analyzes the complexity
of an algorithm, the complexity is considered as a
function of some parameter representing the size
of the problem. Thus, the first thing we must de-
cide in analyzing the generator is what we will
consider its complexity to be a function of. The
most natural parameter would be the size of the
sudoku grid, but since we only consider the tra-
ditional 9 × 9 grid (as opposed to “hex sudoku,”
which is played on a 16 × 16 board, or the more
pathological boards, such as those of size 36 × 36
and 100× 100) this isn’t a parameter at all. Thus,
instead, we resort to the only variable that we
utilize when generating puzzles: the desired dif-
ficulty level d. Our complexity measure will thus
be a function of the form t (d) = f (d) · t0, where
t is the time complexity, f is some function that
we will find through our analysis, and where t0 is
the time complexity for generating a puzzle ran-
domly.

5.4.2 Complexity of Completed Puzzle
Generation

The completed puzzle generation algorithm does
a series of work for each line of the Sudoku, and
potentially does this work over all possible differ-
ent boards. As such, in the worst case we have
the 9 possible values times the 9 cells in a line
times 9 shifts all raised to the 9 lines power. That
is, (9× 9× 9)9 =

(
93

)9 = 927 ≈ 5.8 × 1025. While
it is true that this is a constant, the size of the
constant is prohibitively large.

However, in the average case we not only do
not cover all possible values, or cover all possi-
ble shifts, but we also do not recurse all possible
times. So let us keep the same value for the com-
plexity of generating a line (that is assume we
have to try all 9 values, in all 9 cells, and per-
form all 9 shifts) but let as assume we only do
this once per line. Here we get 9*9*9*9 or 6561.
The actual value may be less then that, or slightly
more, but should hover about that area. The best
case is of course 81, where all values work first
try. We have a very high worst case, but very rea-
sonable average and best cases. The worst case
presented could likely be reduced with analysis

of how the rules of sudoku limit the number of
invalid boards possible (worst case assumes that
every board could be invalid). In practice this al-
gorithm runs in negligible time in comparison to
the masking algorithms.

5.4.3 Complexity of Uniqueness Testing
and Random Filling

In the worst case, the “fast” uniqueness algorithm
will examine each of the 81 cells, and compare it
to each of the other 81 cells. Thus, without adding
in any brute force functionality, the uniqueness
test can be completed in a constant number of
operations: 81 × 81 = 6, 561. When we consider
the hybrid algorithm, and include in our analy-
sis the brute force searching, we find that in the
worst case, we perform the fast test for each al-
lowed guess plus one more time before making
a guess at all. Therefore, the hybrid uniqueness
testing algorithm admits a linear complexity with
respect to the number of allowed guesses.

This allows us to now consider the complex-
ity of the random filling algorithm. Since it does
not allow any guessing when it calls the unique-
ness algorithm, and since it performs the unique-
ness test exactly once per cell, it performs exactly
813 = 531, 441 comparisons. As such, it is a con-
stant time operation, and can be used as a point
of comparison for more complicated algorithms.

5.4.4 Profiling Method

In order to collect empirical data on the complex-
ity of puzzle generation, we implemented a small
code profiling utility class in PHP, as is shown on
page 32. This class exploits that, in PHP 5.0 and
later, when a function-scope class instance vari-
able is created, it’s destructor is called immedi-
ately after the function returns. Thus, we create
an instance of Profiler at the start of each inter-
esting function, and pass the __FUNCTION__ and
__LINE__ macros to its constructor. The class then
compiles timing information into global variables
that are queried after the puzzle is successfully
generated.

In all uses of this profiling data, we will remove
dependencies on our particular hardware by con-
sidering only the normalized time t̂ = t/t0, where
t0 is the mean running time for the random fill
generator.

Page 19 of 62 MCM 2008 Team #3780

5.4.5 WNEF vs Running Time

For the full generator algorithm, we can no longer
make deterministic arguments about complexity,
since there is a dependency on random variables
that is difficult to accommodate. Therefore, we
rely on our profiler to gather empirical data about
the complexity of generating puzzles. In particu-
lar, Figure 13 shows the normalized running time
required to generate a puzzle as a function of the
obtained WNEF after annealing is applied. In or-
der to show detail, we plot the normalized time
on a logarithmic scale (base 2).

This plot suggests that even in the case of the
most difficult puzzles that our algorithm gener-
ates, the running time is no worse than about 20
times that of the random case. Also worth not-
ing is that generating easy puzzles can actually
be faster than generating via random filling.

5.5 Testing

5.5.1 WNEF as a Function of Design
Choices

The generator algorithm, as written, is fairly
generic. We thus need some way to empirically
determine constant terms, such as how many
times we will allow for cell removal to fail be-
fore we conclude that the puzzle is minimal. We
thus plotted the number of failures that we per-
mitted to the WNEF produced, shown in Figure
14. This plot shows us both that we only need
to allow a very small number of failures to en-
joy small WNEF values, and that annealing re-
duces the value still further, even in low-failure
scenario

5.5.2 Hypothesis Testing

5.5.2.1 Effectiveness of Annealing To show
that the process of annealing resulted in lower
WNEF values, and was thus a useful addition to
the algorithm, we tested the hypothesis that it
was effective versus the null hypothesis that it
was not:

H0 : µ = µ′

Ha : µ 6= µ′

where µ is the mean WNEF for puzzles produced
without the aid of annealing and where µ′ is

the mean WNEF for those produced with anneal-
ing enabled. We considered a sample of puz-
zles of size n, whose means and variances were(
ȳ, s2

)
for non-annealed puzzles and

(
ȳ′, s′2

)
for

annealed. Once again, we used the following t-
statistic:

t∗ =
(y − y′)√

s2

n + s′2

n

At a significance level of α = 0.0005 and using
the data shown in Table 2, we rejected the null
hypothesis and concluded that annealing lowered
the WNEF values.

5.5.2.2 Distinctness of Difficulty Levels To
determine whether the difficulty levels of our
puzzle generator were unique, we performed a
Student’s t-distribution hypothesis test using the
following hypotheses:

H0 : µd = µd+1

Ha : µd 6= µd+1

where µd is the mean WNEF of puzzles produced
by our generator algorithm when given d as the
target difficulty. Using a significance level of
α = 0.0005 with the data shown in Table 2, we
use the following as our test statistic:

t∗ =

(
yd − yd+1

)√
s2
d

nd
+

s2
d+1

nd+1

where yd is the mean of nd puzzles produced by
the algorithm, having a sample variance s2

d. We
found that for all d, t∗ > tα, and thus we were
able to reject H0 for all difficulty levels. We con-
cluded that all of the difficulty levels of our puzzle
generator are indeed unique.

6 Strengths and Weaknesses

Our approach to measuring the difficulty of su-
doku puzzles admits some real and important
weaknesses. Primary among these is that it is
possible to increase the difficulty of a puzzle with-
out affecting its WNEF, by violating the assump-
tion that all choices present similar difficulty to
solvers. In particular, puzzles created with more
esoteric solving techniques, such as Swordfish
and XY-Wing, may be crafted such that their

Page 20 of 62 MCM 2008 Team #3780

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4

WNEF after Annealing

N
o

rm
a
li
ze

d
 T

im
e
 (

lo
g

2
)

Figure 13: Running time as a function of the obtained WNEF.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

Number of Fails

W
N

E
F

Before Annealing

After Anneailng

Figure 14: WNEF as a function of allowed failures.

Difficulty 1 2 3 4

Pre-annealing

Mean 0.523999895 0.327451814 0.271656591 0.27661661

Variance 0.017110796 0.005454866 0.002581053 0.004039649

Post-annealing

Mean 0.31876731 0.26157134 0.194262257 0.165920803

Variance 0.000696284 9.32606× 10−5 8.7219× 10−5 0.000185543

Table 2: Pre- and post-annealing WNEF mean and variances (n = 60).

Page 21 of 62 MCM 2008 Team #3780

WNEF is higher than easier puzzles. In acknowl-
edging this weakness, we recognize that there is
a limited regime over which the WNEF metric is
useful. In practice, this regime seemed to exclude
only those puzzles made by computer-based gen-
erators designed to enforce the use of particular
techniques. This was the case, for example, with
both QQWing and SudokuExplainer.

On the other hand, the WNEF approach offered
one very definite and notable advantage: it may
be calculated very quickly. In the worst case, it
looks at the 24 cells adjacent to each cell in the
puzzle. Thus, even at its worst, the WNEF re-
quires only 1,944 cell look-ups, leading us to con-
clude that calculating the WNEF is constant with
respect to the puzzle difficulty. Moreover, the ac-
tual constant bound is relatively small, allowing
us to make frequent evaluations of the WNEF
while tuning puzzles.

Likewise, our generator algorithm admits some
very real weaknesses. In particular, it seems to
have difficulty generating puzzles with a WNEF
lower than some floor; hence our decision to make
our Evil difficulty level somewhat easier than
published puzzles. The reason is that our tuning
algorithm attempts to direct the outcome of prob-
ability, but that it is still inherently a random al-
gorithm. As such, the fact that the probability of
randomly creating a puzzle with a small WNEF
value is very low (that is, a random generator
will produce them very infrequently) implies that
our algorithm will produce them infrequently as
well. As such, even with tuning, there is still a
very good chance that one will not generate such
a hard puzzle. The option of continuing with the
algorithm until you do can take an unreasonable
amount of time.

All this said, however, the algorithm has the
advantage of creating puzzles quickly with lit-
tle algorithmically induced similarities between
puzzles. Our method here is very similar to the
method of randomly generating puzzles until one
of the desired difficulty is found (a method that
is subject to the same disadvantage as ours), ex-
cept that we can do this without generating more
then one puzzle, and that we can generate diffi-
cult puzzles in less time than it takes to generate
multiple puzzles and discard the easiest among
them.

7 Conclusions

In this paper, we introduced and proposed a
metric, the weighted normalized ease function
(WNEF), with which to estimate the difficulty of a
given sudoku puzzle. We based this metric upon
the observation that the essential difficulty en-
countered in solving comes about as a result of
the ambiguities which must be eliminated. Thus,
the metric represented how this ambiguity was
distributed across the puzzle.

Using data that we collected from the con-
trol puzzles, we found that the WNEF showed a
strong negative correlation with the level of dif-
ficulty (the harder a puzzle was, the lower the
WNEF value). We then conducted a hypothe-
sis test to prove with a confidence level of 99.5%
that the WNEF values of different difficulty lev-
els were indeed distinct. We also found that
the specific choice of weighting function did not
change this correlation, and thus made an arbi-
trary choice to use as our weighting function.

We also designed an algorithm that employs
these insights to create puzzles of selectable diffi-
culty. This algorithm works by employing back-
tracking and annealing to optimize the WNEF
metric towards some desired level. Statistical hy-
pothesis tests showed with a 99.95% confidence
level that the annealing led to more optimal re-
sults, and that the generator successfully pro-
duced puzzles falling into four distinct ranges of
difficulty.

References

[1] Sudoku tutorial. http://www.nikoli.
co.jp/en/puzzles/sudoku/. Nikoli Puz-
zles.

[2] Techniques for solving sudoku. http:
//www.sudokuoftheday.com/pages/
techniques-overview.php. Astraware
Limited.

[3] L. AARONSON, Sudoku science. http:
//spectrum.ieee.org/feb06/2809,
Feb. 2006.

[4] G. GREENSPAN, Websudoku. http://
websudoku.com/.

http://www.nikoli.co.jp/en/puzzles/sudoku/
http://www.nikoli.co.jp/en/puzzles/sudoku/
http://www.sudokuoftheday.com/pages/techniques-overview.php
http://www.sudokuoftheday.com/pages/techniques-overview.php
http://www.sudokuoftheday.com/pages/techniques-overview.php
http://spectrum.ieee.org/feb06/2809
http://spectrum.ieee.org/feb06/2809
http://websudoku.com/
http://websudoku.com/

Page 22 of 62 MCM 2008 Team #3780

[5] T. HINKLE, Gnome sudoku applica-
tion. http://http://gnome-sudoku.
sourceforge.net/.

[6] N. JUILLERAT, Sudokuexplainer applica-
tion. http://diuf.unifr.ch/people/
juillera/Sudoku/Sudoku.html.

[7] J. NANNI, Games world of sudoku, April
2008.

[8] S. OSTERMILLER, Qqwing application.
http://ostermiller.org/qqwing/.

[9] STERTEN@AOL.COM, Magictour hosted su-
doku resources. http://magictour.
free.fr/sudoku.htm.

[10] A. M. TAYLOR, Dell sudoku challenge,
Spring 2008.

http://http://gnome-sudoku.sourceforge.net/
http://http://gnome-sudoku.sourceforge.net/
http://diuf.unifr.ch/people/juillera/Sudoku/Sudoku.html
http://diuf.unifr.ch/people/juillera/Sudoku/Sudoku.html
http://ostermiller.org/qqwing/
http://magictour.free.fr/sudoku.htm
http://magictour.free.fr/sudoku.htm

Page 23 of 62 MCM 2008 Team #3780

1 Source Code

Listing 1: Implementation of classification functions and WNEF metric.
1 /∗
2 ∗ Puzzle . java : Encapsulates most de ta i l s about a puzzle .
3 ∗/
4

5 package sudokumetricizer ;
6

7 import java . i o . BufferedReader ;
8 import java . i o . Reader ;
9 import java . u t i l . Scanner ;

10

11 public class Puzzle {
12

13 /∗∗
14 ∗ All values are calculated from the exponential weighting function .
15 ∗ See Section 4.2 f o r how these values were calculated ,
16 ∗ and Table 1 f o r the actual values .
17 ∗/
18 public static enum D i f f i c u l t y {
19 EASY (1 , 0.2680756 , 0.00096963) ,
20 MEDIUM (2 , 0.1108268 , 0.000502135) ,
21 HARD (3 , 0.09244832 , 0.000255063) ,
22 EVIL (4 , 0.04078146 , 0.000125557) ;
23

24 // For a l l o f these f i e lds , please see Section 4.2 .
25 public final double
26 /∗∗
27 ∗ Estimate of the variance in the WNEF for puzzles o f th i s
28 ∗ d i f f i c u l t y .
29 ∗/
30 EST_VAR_WNEF,
31 /∗∗
32 ∗ Estimate of the mean WNEF for puzzles o f th i s d i f f i c u l t y .
33 ∗/
34 EST_MEAN_WNEF,
35 /∗∗
36 ∗ Estimmate of the standard deviation for puzzles o f th i s
37 ∗ d i f f i c u l t y .
38 ∗/
39 EST_STDDEV_WNEF;
40

41 /∗∗
42 ∗ Numeric value that may be used in in t e rpro la t i on .
43 ∗/
44 public final int DIFFICULTY_INDEX;
45

46 D i f f i c u l t y (int di f f i cu l ty_ index ,
47 double est_mean_wnef ,
48 double est_var_wnef) {
49 DIFFICULTY_INDEX = d i f f i c u l t y _ i n d e x ;
50 EST_VAR_WNEF = est_var_wnef ;
51 EST_MEAN_WNEF = est_mean_wnef ;
52 EST_STDDEV_WNEF = Math . sqrt (EST_VAR_WNEF) ;
53 }
54

55 /∗∗
56 ∗ A useful numerical constant equal to 1/

√
2π .

57 ∗/
58 public final static double

Page 24 of 62 MCM 2008 Team #3780

59 ROOT_1OVER_2PI = Math . sqrt (1 . 0 / (2 . 0 ∗Math . PI)) ;
60

61

62

63 /∗f (wnef = w | D = d) = 1
2πσ̂2 exp

˘
− 1

2
σ̂2 (w − µ̂)

¯
∗/

64

65

66

67

68

69

70

71

72 public double pdf (double given_wnef) {
73 double p = (1 . 0 /EST_STDDEV_WNEF) ∗ ROOT_1OVER_2PI ∗
74 Math . exp (
75 (−0.5 / EST_VAR_WNEF) ∗
76 Math . pow(given_wnef − EST_MEAN_WNEF, 2 .0)
77) ;
78 return p ;
79 }
80

81 }
82

83 private final static int [] EXP_EASE_WEIGHTS =
84 {256 ,128 ,64 ,32 ,16 ,8 ,4 ,2 ,1} ;
85

86 private final static int [] LINEAR_EASE_WEIGHTS =
87 {9 ,8 ,7 ,6 ,5 ,4 ,3 ,2 ,1 } ;
88

89 private final static int [] SQUARE_EASE_WEIGHTS =
90 {81 ,64 ,49 ,36 ,25 ,16 ,9 ,4 ,1} ;
91

92 private int [] [] c e l l s ;
93

94 /∗∗
95 ∗ Builds a puzzle given i t s c e l l s .
96 ∗/
97 public Puzzle (int [] [] c e l l s) {
98 this . c e l l s = c e l l s . clone () ;
99 }

100

101 /∗∗
102 ∗ Builds a puzzle given i t s c e l l s expressed in a one−dimensional array .
103 ∗/
104 public Puzzle (int [] l i n e a r _ c e l l s) {
105 this . c e l l s = new int [9] [9] ;
106 for (int i = 0 ; i < 9 ; i ++) {
107 for (int j = 0 ; j < 9 ; j ++) {
108 c e l l s [i] [j] = l i n e a r _ c e l l s [i ∗9+ j] ;
109 }
110 }
111 }
112

113 /∗∗
114 ∗ Builds up a puzzle by reading in t egers from a Reader o b j e c t .
115 ∗/
116 public Puzzle (Reader r) {
117

118 int idx = 0;
119 final int max = 81;
120

Page 25 of 62 MCM 2008 Team #3780

121 c e l l s = new int [9] [9] ;
122

123 Scanner scan = null ;
124 scan = new Scanner (new BufferedReader (r)) ;
125

126 while (scan . hasNext () && idx < max) {
127 int next = scan . nextInt () ;
128 c e l l s [idx / 9] [idx % 9] = next ;
129 idx ++;
130 }
131

132 }
133

134 /∗∗
135 ∗ Counts the number of empty c e l l s in the puzzle .
136 ∗/
137 public int numEmptyCells () {
138

139 int count = 0;
140

141 for (int [] row : c e l l s) {
142

143 for (int c : row) {
144 i f (c == 0) {
145 count ++;
146 }
147 }
148

149 }
150

151 return count ;
152

153 }
154

155 /∗∗
156 ∗ Returns the c l u s t e r number of the c e l l (i , j) .
157 ∗/
158 public int blockOf (int i , int j) {
159 return (int) (Math . f l o o r (j / 3) + 3∗Math . f l o o r (i / 3)) ;
160 }
161

162 /∗∗
163 ∗ Returns the row index of the block representa t ive for the given block
164 ∗ index .
165 ∗/
166 public int rowRepresentativeOf (int block) {
167 return 3 ∗ (int) Math . f l o o r ((double) block / 3 .0) ;
168 }
169

170 /∗∗
171 ∗ Returns the row index of the block representa t ive for the c e l l with given
172 ∗ row and column ind i c i e s .
173 ∗/
174 public int rowRepresentativeOf (int i , int j) {
175 return rowRepresentativeOf (blockOf (i , j)) ;
176 }
177

178 /∗∗
179 ∗ Returns the column index of the block representa t ive for the given block
180 ∗ index .
181 ∗/
182 public int colRepresentativeOf (int c luster) {

Page 26 of 62 MCM 2008 Team #3780

183 return 3 ∗ (c luster % 3) ;
184 }
185

186 /∗∗
187 ∗ Returns the column index of the block representa t ive for the c e l l with
188 ∗ given row and column ind i c i e s .
189 ∗/
190 public int colRepresentativeOf (int i , int j) {
191 return colRepresentativeOf (blockOf (i , j)) ;
192 }
193

194 /∗∗
195 ∗ Finds constraints on a c e l l by examining other c e l l s on the same row .
196 ∗
197 ∗ @param constraints
198 ∗ constraints [n] == true indicates that c e l l [i] [j]
199 ∗ cannot be (n + 1) .
200 ∗/
201 public void constrainCellByRow (int i , int j , boolean [] constraints) {
202

203 for (int other_ j = 0 ; other_ j < c e l l s [i] . length ; other_ j ++) {
204 i f (other_ j != j && c e l l s [i] [other_ j] != 0) {
205 constraints [c e l l s [i] [other_ j] − 1] = true ;
206 }
207 }
208

209 }
210

211 /∗∗
212 ∗ Finds constraints on a c e l l by examining other c e l l s on the same column .
213 ∗
214 ∗ @param constraints
215 ∗ constraints [n] == true indicates that c e l l [i] [j]
216 ∗ cannot be (n + 1) .
217 ∗/
218 public void constrainCellByCol (int i , int j , boolean [] constraints) {
219

220 for (int other_i = 0 ; other_i < c e l l s . length ; other_i ++) {
221 i f (other_i != i && c e l l s [other_i] [j] != 0) {
222 constraints [c e l l s [other_i] [j] − 1] = true ;
223 }
224 }
225

226 }
227

228 /∗∗
229 ∗ Finds constraints on a c e l l by examining other c e l l s within the same
230 ∗ block .
231 ∗
232 ∗ @param constraints
233 ∗ constraints [n] == true indicates that c e l l [i] [j]
234 ∗ cannot be (n + 1) .
235 ∗/
236 public void constrainCellByCluster (int i , int j , boolean [] constraints) {
237

238 int o r i g _ i = rowRepresentativeOf (i , j) ,
239 o r i g _ j = colRepresentativeOf (i , j) ;
240

241 final int l im_i = o r i g _ i + 3 , l im_j = o r i g _ j + 3 ;
242

243 for (int other_i = o r i g _ i ; other_i < l im_i ; other_i ++) {
244 for (int other_ j = o r i g _ j ; other_ j < l im_j ; other_ j ++) {

Page 27 of 62 MCM 2008 Team #3780

245 i f (other_i != i && other_ j != j && c e l l s [other_i] [other_ j] != 0) {
246 constraints [c e l l s [other_i] [other_ j] − 1] = true ;
247 }
248 }
249 }
250

251 }
252

253 /∗∗
254 ∗ Returns a histogram of the choices avaiable to each c e l l , as determined
255 ∗ by simple elimination .
256 ∗
257 ∗ @returns
258 ∗ An array ~c such that cn i s the number of c e l l s with
259 ∗ n + 1 available choices .
260 ∗/
261 public int [] histChoices () throws RuntimeException {
262

263 int [] h is t = new int [9] ;
264

265 for (int i = 0 ; i < 9 ; i ++) {
266 for (int j = 0 ; j < 9 ; j ++) {
267 hist [numChoicesForCell (i , j) − 1]++;
268 }
269 }
270

271 return hist ;
272

273 }
274

275 /∗∗
276 ∗ Counts the number of choices avai lable for a given c e l l , as determined by
277 ∗ simple elimination .
278 ∗/
279 public int numChoicesForCell (int i , int j) {
280

281 int count = c e l l s . length ;
282

283 boolean [] constraints = new boolean [c e l l s . length] ;
284

285 // Set everything to f a l s e .
286 for (int idx = 0; idx < c e l l s . length ; idx ++) {
287 constraints [idx] = false ;
288 }
289

290 constrainCellByRow (i , j , constraints) ;
291 constrainCellByCol (i , j , constraints) ;
292 constrainCellByCluster (i , j , constraints) ;
293

294 // Count the number of r e s t r i c t i o n s .
295 for (int idx = 0; idx < c e l l s . length ; idx ++) {
296 i f (constraints [idx]) count−−;
297 }
298

299 return count ;
300

301 }
302

303 /∗∗
304 ∗ Counts the t o t a l number of choices avai lable to a l l empty c e l l s on the
305 ∗ puzzle , as determined by simple elimination .
306 ∗/

Page 28 of 62 MCM 2008 Team #3780

307 public long totalChoices () {
308

309 long count = 0;
310

311 for (int i = 0 ; i < 9 ; i ++) {
312 for (int j = 0 ; j < 9 ; j ++) {
313 i f (c e l l s [i] [j] == 0) {
314 count += numChoicesForCell (i , j) ;
315 }
316 }
317 }
318

319 return count ;
320

321 }
322

323 /∗∗
324 ∗ Evaluates the weighted normalized ease function for the puzzle , using the
325 ∗ exponential weight function .
326 ∗/
327 public double wnef () {
328 return wnef (EXP_EASE_WEIGHTS) ;
329 }
330

331 /∗∗
332 ∗ Calculates the Weighted Normalized Ease Function .
333 ∗/
334 public double wnef (int [] weights) {
335

336 long count = 0;
337

338 for (int i = 0 ; i < 9 ; i ++) {
339 for (int j = 0 ; j < 9 ; j ++) {
340 i f (c e l l s [i] [j] != 0) {
341 count += weights [numChoicesForCell (i , j) − 1] ;
342 }
343 }
344 }
345

346 return (double) count / (double) (weights [0] ∗ numEmptyCells ()) ;
347

348 }
349

350 /∗∗
351 ∗ Estimates the d i f f i c u l t y c lass o f the puzzle by finding which c lass gives
352 ∗ the highest value of the WNEF probabi l i t y d i s t r ibut ion function .
353 ∗
354 ∗ This method e f f e c t i v e l y implements Equation ?? .
355 ∗/
356 public D i f f i c u l t y est imatedDi f f i cu l ty () {
357

358 double w = wnef () ;
359 double max_pdf = −1.0;
360 D i f f i c u l t y d i f f = null ;
361

362 for (D i f f i c u l t y d : D i f f i c u l t y . values ()) {
363 double last_pdf = d . pdf (w) ;
364 i f (last_pdf > max_pdf) {
365 max_pdf = last_pdf ;
366 d i f f = d ;
367 }
368 }

Page 29 of 62 MCM 2008 Team #3780

369

370 return d i f f ;
371

372 }
373

374 /∗∗
375 ∗ Returns a space−separated l i s t o f metrics . In order :
376 ∗ − number of empty c e l l s
377 ∗ − t o t a l number of choices
378 ∗ − the exponential wnef
379 ∗ − the square wnef
380 ∗ − the l inear wnef
381 ∗ − the estimated d i f f i c u l t y index
382 ∗ − the value of the pdf used to find the estimated d i f f i c u l t y
383 ∗/
384 public String metricsString () {
385

386 String histStr = java . u t i l . Arrays . toString (histChoices ()) ;
387 histStr = histStr . substring (1 , histStr . length () − 1) ;
388

389 D i f f i c u l t y d = est imatedDi f f i cu l ty () ;
390

391 double w = wnef (EXP_EASE_WEIGHTS) ;
392

393 return Integer . toString (numEmptyCells ()) + " " +
394 Long . toString (totalChoices ()) + " " +
395 java . u t i l . Arrays . toString (histChoices ()) + " " +
396 Double . toString (w) + " " +
397 Double . toString (wnef (SQUARE_EASE_WEIGHTS)) + " " +
398 Double . toString (wnef (LINEAR_EASE_WEIGHTS)) + " " +
399 Integer . toString (d .DIFFICULTY_INDEX) + " " +
400 Double . toString (d . pdf (w)) ;
401 }
402

403 @Override
404 public String toString () {
405

406 StringBuffer sb = new StringBuffer () ;
407

408 for (int [] row : c e l l s) {
409

410 for (int c : row) {
411 sb . append (c) ;
412 sb . append (" ") ;
413 }
414

415 sb . append ("\n") ;
416

417 }
418

419 return sb . toString () ;
420

421 }
422

423 }

Listing 2: Command-line interface for Puzzle class.
1 /∗
2 ∗ Main . java : Provides data for Puzzle . java .
3 ∗/
4

Page 30 of 62 MCM 2008 Team #3780

5 package sudokumetricizer ;
6

7 import java . i o . BufferedReader ;
8 import java . i o . FileReader ;
9 import java . i o . IOException ;

10 import java . i o . InputStreamReader ;
11 import java . u t i l . I terator ;
12 import java . u t i l . logging . Level ;
13 import java . u t i l . logging . Logger ;
14

15 public class Main {
16

17 public static void main (String [] args) throws IOException {
18

19 i f (args . length == 0) {
20 System . out . pr int ln (
21 " Order of metrics :\n" +
22 "\tNumber of blanks .\n" +
23 "\tTotal number of choices .\n" +
24 "\tExponential weighted NEF.\n" +
25 "\tSquared weighted NEF.\n" +
26 "\tLinear weighted NEF.\n" +
27 "\tEstimated d i f f i c u l t y index .\n" +
28 "\tPDF used to estimate d i f f i c u l t y .\n") ;
29 System . ex i t (0) ;
30 }
31

32 i f (args [0] . trim () . equals ("−−")) {
33

34 int [] l i n e a r _ c e l l s = new int [args . length −1];
35

36 for (int i = 1 ; i < args . length ; i ++) {
37 l i n e a r _ c e l l s [i − 1] = Integer . parseInt (args [i]) ;
38 }
39

40 printPuzzle (new Puzzle (l i n e a r _ c e l l s)) ;
41

42 System . ex i t (0) ;
43

44 } else i f (args [0] . trim () . equals ("−−qqwing ")) {
45

46 for (int i = 1 ; i < args . length ; i ++) {
47

48 String filename = args [i] ;
49 Iterator <int [] > l inearFi l e = readLinearCells (filename) ;
50 int j = 0 ;
51

52 while (l inearFi l e . hasNext ()) {
53 int [] l i n e a r _ c e l l s = l inearFi l e . next () ;
54 System . out . print (truncateFilename (filename) + " : " + j + " ") ;
55 printPuzzle (new Puzzle (l i n e a r _ c e l l s)) ;
56 j ++;
57 }
58

59

60 }
61

62 System . ex i t (0) ;
63

64 }
65

66 for (String filename : args) {

Page 31 of 62 MCM 2008 Team #3780

67

68 i f (filename . trim () . equals ("−")) {
69 System . out . print (" stdin ") ;
70 printPuzzle (new Puzzle (new InputStreamReader (System . in))) ;
71 } else {
72 System . out . print (truncateFilename (filename) + " ") ;
73 printPuzzle (new Puzzle (new FileReader (filename))) ;
74 }
75

76 }
77

78 }
79

80 private static String truncateFilename (String str) {
81

82 // Find the pos i t ion of the second−to−l a s t slash .
83 int pos_from = str . lastIndexOf (" / " , s t r . lastIndexOf (" / ") − 1) ;
84

85 return str . substring (pos_from + 1) ;
86

87 }
88

89 private static void printPuzzle (Puzzle p) {
90 try {
91 System . out . pr int ln (p . metricsString ()) ;
92 } catch (RuntimeException rex) {
93 System . out . pr int ln () ;
94 System . err . pr int ln (" Failed . ") ;
95 }
96 }
97

98 private static Iterator <int [] > readLinearCells (String filename)
99 throws IOException

100 {
101

102 final BufferedReader br = new BufferedReader (new FileReader (filename)) ;
103

104 // Throw away the f i r s t l ine .
105 br . readLine () ;
106

107 return new Iterator <int [] > () {
108

109 public boolean hasNext () {
110 try {
111 return br . ready () ;
112 } catch (IOException ex) {
113 Logger . getLogger (Main . class . getName ()) . log (Level .SEVERE, null , ex) ;
114 return false ;
115 }
116 }
117

118 public int [] next () {
119 try {
120 int [] l i n e a r _ c e l l s = new int [8 1] ;
121 String l ine = br . readLine () ;
122 for (int i = 0 ; i < 81; i ++) {
123 try {
124 l i n e a r _ c e l l s [i] = Integer . parseInt (l ine . substring (i , i +1)) ;
125 } catch (NumberFormatException ex) {
126 l i n e a r _ c e l l s [i] = 0 ;
127 }
128 }

Page 32 of 62 MCM 2008 Team #3780

129 return l i n e a r _ c e l l s ;
130 } catch (IOException ex) {
131 Logger . getLogger (Main . class . getName ()) . log (Level .SEVERE, null , ex) ;
132 return null ;
133 }
134 }
135

136 public void remove () {
137 throw new UnsupportedOperationException ("Read−only i t e r a t o r . ") ;
138 }
139

140 } ;
141

142 }
143

144 }

Listing 3: Implementation of generation algorithm.
1 <?php
2 include (" tuning . php") ;
3

4 set_time_limit (45) ;
5 /∗
6 ∗ This header f i l e contains a l l operations associated with the
7 ∗ generation and ranking of Sudoku puzzles
8 ∗/
9

10 // This c lass keeps track of the times spent in each function
11 $prof i le_data = array () ;
12 c lass P r o f i l e r
13 {
14 var $time ;
15 var $_l ine ;
16 var $_function ;
17 function __construct ($f , $l)
18 {
19 $this−>_function = $f ;
20 $this−>_l ine = $l ;
21 $this−>time = microtime (true) ;
22 }
23

24 function __destruct ()
25 {
26 global $prof i le_data ;
27

28 $end_time = microtime (true) ;
29 $dtime = ($end_time−$this−>time) ;
30 $str = " $this−>_l ine : $this−>_function " ;
31 i f (! isset ($prof i le_data [$str])) $prof i le_data [$str] = $dtime ;
32 else $prof i le_data [$str] += $dtime ;
33 $str .= " # ca l led " ;
34 i f (! isset ($prof i le_data [$str])) $prof i le_data [$str] = 1 ;
35 else $prof i le_data [$str] ++;
36 }
37 }
38

39 // This function normalizes php array keys , such that {1=>x , 2+>y . . } shal l become {0=>x ,
1=>y , . . . }

40 function NormalizeKeys ($array)
41 {
42 return array_values ($array) ;

Page 33 of 62 MCM 2008 Team #3780

43 }
44

45 // This function converts a wnef to a s tr ing d i f f i c u l t y
46 function MakeDifficulty ($wnef)
47 {
48 i f ($wnef > .28) return "Easy" ;
49 i f ($wnef > .2250) return "Medium" ;
50 i f ($wnef > .18) return " hard " ;
51 return " Evil " ;
52 }
53

54 // Shuff les an array withour messing with key value pair assoc iat ion
55 // from : http ://us2 . php . net/shu f f l e
56 // user : " r ich "
57 function shuf f le_assoc (&$array)
58 {
59 i f (count ($array) >1) //$keys needs to be an array , no need to shu f f l e 1 item

anyway
60 {
61 $keys = array_rand ($array , count ($array)) ;
62

63 foreach ($keys as $key) $new[$key] = $array [$key] ;
64

65 $array = $new ;
66 }
67 return true ; //because i t ’ s a wannabe shu f f l e () , which returns true
68 }
69

70 // This c lass contains a l l the algorithms and information regarding a Sudoku puzzle
71 c lass Sudoku
72 {
73

74

75 //
∗∗

76 // vars
77

78 // th is i s a l i s t o f a l l valid numbers a Sudoku c e l l may be s e t to
79 var $numbers = array (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9) ;
80

81 // th is i s a two dimensional array stor ing a solved Sudoku puzzle
82 var $board = array () ;
83

84 // th is i s a two dimensional array indicating which board spots are given at the
s tar t o f a game

85 var $mask = array () ;
86

87 // array of choices avai lable for each c e l l
88 var $choices = array () ;
89

90

91

92

93

94 //
∗∗

95 // U t i l i t y funct ions
96

97 function A($c , $i) { return floor ($c / 3) ∗3+ floor ($i / 3) ; }
98 function B($c , $i) { return (intval ($c) %3)∗3 + intval ($i) %3; }

Page 34 of 62 MCM 2008 Team #3780

99 function C($a , $b) { return floor ($b / 3) +floor ($a / 3) ∗3; }
100 function I ($a , $b) { return intval ($b) %3+(intval ($a) %3)∗3; }
101

102 // th is function returns indices o f a l l c e l l s in a given c l u s t e r
103 function ClusterCanidates ($c)
104 {
105 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
106

107 s t a t i c $c lusters = array (
108 array (
109 array (0 ,0) , array (0 ,1) , array (0 ,2) ,
110 array (1 ,0) , array (1 ,1) , array (1 ,2) ,
111 array (2 ,0) , array (2 ,1) , array (2 ,2)
112) ,
113 array (
114 array (0 ,3) , array (0 ,4) , array (0 ,5) ,
115 array (1 ,3) , array (1 ,4) , array (1 ,5) ,
116 array (2 ,3) , array (2 ,4) , array (2 ,5)
117) ,
118 array (
119 array (0 ,6) , array (0 ,7) , array (0 ,8) ,
120 array (1 ,6) , array (1 ,7) , array (1 ,8) ,
121 array (2 ,6) , array (2 ,7) , array (2 ,8)
122) ,
123

124 array (
125 array (3 ,0) , array (3 ,1) , array (3 ,2) ,
126 array (4 ,0) , array (4 ,1) , array (4 ,2) ,
127 array (5 ,0) , array (5 ,1) , array (5 ,2)
128) ,
129 array (
130 array (3 ,3) , array (3 ,4) , array (3 ,5) ,
131 array (4 ,3) , array (4 ,4) , array (4 ,5) ,
132 array (5 ,3) , array (5 ,4) , array (5 ,5)
133) ,
134 array (
135 array (3 ,6) , array (3 ,7) , array (3 ,8) ,
136 array (4 ,6) , array (4 ,7) , array (4 ,8) ,
137 array (5 ,6) , array (5 ,7) , array (5 ,8)
138) ,
139

140 array (
141 array (6 ,0) , array (6 ,1) , array (6 ,2) ,
142 array (7 ,0) , array (7 ,1) , array (7 ,2) ,
143 array (8 ,0) , array (8 ,1) , array (8 ,2)
144) ,
145 array (
146 array (6 ,3) , array (6 ,4) , array (6 ,5) ,
147 array (7 ,3) , array (7 ,4) , array (7 ,5) ,
148 array (8 ,3) , array (8 ,4) , array (8 ,5)
149) ,
150 array (
151 array (6 ,6) , array (6 ,7) , array (6 ,8) ,
152 array (7 ,6) , array (7 ,7) , array (7 ,8) ,
153 array (8 ,6) , array (8 ,7) , array (8 ,8)
154)
155) ;
156

157 return $c lusters [$c] ;
158 }
159

160 // th is function returns indices o f a l l c e l l s in a given row

Page 35 of 62 MCM 2008 Team #3780

161 function RowCanidates ($a)
162 {
163 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
164

165 // remember our c l u s t e r
166 $row = array () ;
167 for ($b=0; $b<9; $b++)
168 {
169 $row [] = array ($a , $b) ;
170 }
171 return $row ;
172 }
173

174 // th is function returns indices o f a l l columns in a given row
175 function ColCanidates ($b)
176 {
177 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
178

179 // remember our c l u s t e r
180 $col = array () ;
181 for ($a=0; $a<9; $a++)
182 {
183 $col [] = array ($a , $b) ;
184 }
185 return $col ;
186 }
187

188 // returns the number of values not hidden by the given mask
189 function NumValues ($our_mask)
190 {
191 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
192

193 $num = 0;
194 foreach ($our_mask as $g2)
195 {
196 foreach ($g2 as $g)
197 {
198 i f ($g == 1) $num++;
199 }
200 }
201 return $num;
202 }
203

204

205

206

207

208

209 //
∗∗

210 // Loading and Storing funct ions
211

212

213 // crea t es a s tr ing representat ion of the board given a mask
214 // th is representat ion shal l replace any hidden value with a 0
215 function GetPuzzleString ($our_mask)
216 {
217 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
218

219 $puzzle_string = " " ;
220 foreach ($this−>board as $k1=>$a)

Page 36 of 62 MCM 2008 Team #3780

221 {
222 foreach ($a as $k2=>$b)
223 {
224 // only add to puzzle f i l e i f th i s i s a given c e l l , e l s e write 0
225 i f ($our_mask [$k1] [$k2]) $puzzle_string .= "$b " ;
226 else $puzzle_string .= "0 " ;
227 }
228 }
229 return $puzzle_string ;
230 }
231

232

233 // Writes th i s puzzle to a f i l e given an integer id
234 // " samples/s$number . t x t " i s the solved puzzle
235 // " samples/b$number . t x t " i s the i n i t i a l puzzle
236 function ToFile ($number)
237 {
238 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
239

240 // contents o f so lut ion f i l e
241 $ f i l e _ s t r i n g _ s = " " ;
242

243 // contents o f puzzle f i l e
244 $ f i l e_s t r ing_b = " " ;
245

246 // convert board to s tr ing
247 foreach ($this−>board as $k1=>$a)
248 {
249 foreach ($a as $k2=>$b)
250 {
251 $ f i l e _ s t r i n g _ s .= $b . " " ;
252

253 // only add to puzzle f i l e i f th i s i s a given c e l l , e l s e write 0
254 i f ($this−>mask[$k1] [$k2]) $ f i l e _s t r ing_b .= "$b " ;
255 else $ f i l e_s t r ing_b .= "0 " ;
256 }
257

258 $ f i l e _ s t r i n g _ s .= "\r\n" ;
259 $ f i l e_s t r ing_b .= "\r\n" ;
260 }
261

262 // output f i l e s
263 f i l e_put_contents (" samples / s$number . txt " , $ f i l e _ s t r i n g _ s) ;
264 f i l e_put_contents (" samples / b$number . txt " , $ f i l e_s t r ing_b) ;
265 }
266

267

268 // Reads th i s puzzle from a f i l e given an integer id
269 // " samples/s$number . t x t " i s the solved puzzle
270 // " samples/b$number . t x t " i s the i n i t i a l puzzle
271 function FromFile ($number)
272 {
273 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
274

275 $ f i l e _ s t r i n g s _ s = f i l e (" samples / s$number . txt ") ;
276 $ f i l e_s t r ings_b = f i l e (" samples / b$number . txt ") ;
277

278 foreach ($ f i l e _ s t r i n g s _ s as $key => $val)
279 {
280 $this−>board [$key] = explode (" " , $val) ;
281 }
282

Page 37 of 62 MCM 2008 Team #3780

283 foreach ($ f i l e _s t r ings_b as $key => $val)
284 {
285 $gs = explode (" " , $val) ;
286 foreach ($gs as $kg => $g)
287 {
288 i f ($g) $this−>mask[$key] [$kg] = 1;
289 else $this−>mask[$key] [$kg] = 0;
290 }
291 }
292 }
293

294

295 // Saves a loaded contro l puzzle back to the given f i l e
296 // This i s use fu l l f or f i l e type conversion
297 function StoreControlPuzzle ($fname)
298 {
299 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
300

301 // contents o f puzzle f i l e
302 $ f i l e _ s t r i n g = " " ;
303

304 // convert board to s tr ing
305 foreach ($this−>board as $k1=>$a)
306 {
307 foreach ($a as $k2=>$b)
308 {
309 $ f i l e _ s t r i n g .= $b . " " ;
310 }
311

312 $ f i l e _ s t r i n g .= "\r\n" ;
313 }
314

315 // output f i l e s
316 f i l e_put_contents ($fname , $ f i l e _ s t r i n g) ;
317 }
318

319

320 // Loads a contro l puzzle so that we may examin i t
321 // Is f l e x i b l e to support d i f f e r i n g ways of s tor ing Sudoku data
322 function LoadControlPuzzle ($path)
323 {
324 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
325

326 $ f i l e _ s t r i n g s = f i l e ($path) ;
327

328 foreach ($ f i l e _ s t r i n g s as $key => $val)
329 {
330 $l ine = s t r _ s p l i t ($val) ;
331 $i = 0;
332 foreach ($ l ine as $l)
333 {
334 i f ($l == " . " || $l == "−") $l = 0 ;
335 i f (! is_numeric ($l)) continue ;
336 $this−>board [$key] [] = $l ;
337 $i ++;
338 i f ($i >= 9) break ;
339 }
340 }
341

342 foreach ($this−>board as $key1=>$val1)
343 {
344 foreach ($val1 as $key2=>$val2)

Page 38 of 62 MCM 2008 Team #3780

345 {
346 i f (! is_numeric ($val2)) unset ($this−>board [$key1] [$key2]) ;
347 else
348 {
349 i f ($val2 == 0) $this−>mask[$key1] [$key2] = 0;
350 else $this−>mask[$key1] [$key2] = 1;
351 }
352 }
353 $this−>board [$key1] = NormalizeKeys ($this−>board [$key1]) ;
354 $this−>mask[$key1] = NormalizeKeys ($this−>mask[$key1]) ;
355 }
356

357 $this−>RenderPuzzle ($this−>board , $this−>mask) ;
358 }
359

360

361 // Outputs the puzzle to the screen in a simple debug fass ion
362 function RenderPuzzle ($our_board , $our_mask)
363 {
364 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
365

366 echo "<table border =\"1\" v−align =\" center \"> " ;
367 foreach ($our_board as $k1=>$val1)
368 {
369 echo "<tr >" ;
370 foreach ($val1 as $k2=>$val2)
371 {
372 echo "<td width=\"60px\" height=\"60px\" ><center >" ;
373 i f ($our_mask [$k1] [$k2] == 1) echo "$val2 " ;
374 else
375 {
376 echo "<small >−</small>" ;
377 }
378 echo " </ center ></td>" ;
379 }
380 echo " </ tr >" ;
381 }
382 echo " </ table >" ;
383 i f ($this−>ValidateBoard ($our_board)) echo " valid <br / > " ;
384 else echo " I N V A L I D<br / > " ;
385 }
386

387

388

389

390

391

392 //
∗∗

393 // Complete board generation
394

395

396 // This function performs a backtracking algorithm that f i l l s in the given l ine and
recurs iv e l y a l l fol lowing l ine s

397 // with valid numbers .
398 // $l ine : the current l ine number
399 // $c lus t e r s : the values in the current three c l u s t e r s so far
400 // $cols : the values in the 9 columns so far
401 function Fi l lLines ($line , $clusters , $co ls)
402 {
403 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;

Page 39 of 62 MCM 2008 Team #3780

404

405 // save our current s ta t e
406 $our_numbers = $this−>numbers ;
407 $our_clusters = $clusters ;
408 $our_cols = $cols ;
409

410 // base condit ion
411 i f ($ l ine >= 9) return true ;
412

413 // shuf f l e the valid numbers l i s t
414 shuffle ($our_numbers) ;
415

416 // keep track of the numbers remaining
417 $numbers_left = $our_numbers ;
418

419 // keep track of our current column
420 $index = 0;
421

422 // keep track of numbers that we triad but fa i l ed to place
423 $slack = array () ;
424

425 // keep track of how many times we sh i f t ed the numbers array to try a new
sequence

426 $num_shifts = 0 ;
427

428 // now l e t ’ s t ry to place the numbers 1 . . 9 into th i s row
429 while (true)
430 {
431 // grab the next number
432 $number = array_pop ($numbers_left) ;
433

434 // i f th i s number i s not in our current c l u s t e r and not in our current column
then we are good to go

435 i f (! in_array ($number , $our_clusters [floor ($index / 3)]) && ! in_array (
$number , $our_cols [$index]))

436 {
437 // place the number into the board
438 $this−>board [$l ine] [$index] = $number ;
439

440 // keep track of the addition to th i s c l u s t e r
441 $our_clusters [floor ($index / 3)] [] = $number ;
442

443 // keep track of the addition to th i s column
444 $our_cols [$index] [] = $number ;
445

446 // move on to the next column
447 $index ++;
448

449 // add any slack numbers to the numbers we have l e f t
450 foreach ($slack as $s) $numbers_left [] = $s ;
451

452 // clear the slack numbers
453 $slack = array () ;
454 }
455 else
456 {
457 // no good , add th is number to slack , and move on to the next
458 $slack [] = $number ;
459 }
460

461 // i f we have covered a l l columns
462 i f ($index >= 9)

Page 40 of 62 MCM 2008 Team #3780

463 {
464 // i f we are moving to the next group of three l ines , then c lear the

c lus ters , as we are now leaving them
465 i f (intval ($ l ine+1)%3 == 0) $nclusters = array (array () , array () ,

array ()) ;
466 // e l s e keep the same c l u s t e r s
467 else $nclusters = $our_clusters ;
468

469 // recurse
470 i f ($this−>Fi l lLines ($l ine +1 , $nclusters , $our_cols)) return true ;
471 }
472

473 // remember , numbers may be in slack , and so th i s can happen even when we are
not done

474 i f (count ($numbers_left) == 0)
475 {
476 // i f we have sh i f t ed as far as we can , then jus t give up
477 i f ($num_shifts == 9) return false ;
478

479 // e l s e l e t ’ s t ry th i s l ine over again
480 unset ($this−>board [$l ine]) ;
481

482 // r e c a l l our data
483 $our_cols = $cols ;
484 $our_clusters = $clusters ;
485

486 // cy c l e the numbers
487 $numbers_left = $our_numbers ;
488 array_shift ($numbers_left) ;
489 $numbers_left [] = $our_numbers [0] ;
490 $our_numbers = $numbers_left ;
491

492 // r e s e t the column
493 $index = 0;
494

495 // r e s e t the slack
496 $slack = array () ;
497

498 // keep track of the number of times we do th i s
499 $num_shifts ++;
500 }
501 }
502 }
503

504 // F i l l s in the board with valid Sudoku numbers
505 function FillBoard ()
506 {
507 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
508

509 shuffle ($this−>numbers) ;
510 $this−>board = array () ;
511

512 // s e t the f i r s t l ine to random values
513 $this−>board [] = $this−>numbers ;
514

515 // add these values to c l u s t e r s and cols , these keep track of what numbers have
been used

516 $clusters = array (array () , array () , array ()) ;
517 for ($i =0; $i <3; $i++) $c lusters [0] [] = $this−>board [0] [$i] ;
518 for ($i =3; $i <6; $i++) $c lusters [1] [] = $this−>board [0] [$i] ;
519 for ($i =6; $i <9; $i++) $c lusters [2] [] = $this−>board [0] [$i] ;
520 $cols = array (array () , array () , array () ,

Page 41 of 62 MCM 2008 Team #3780

521 array () , array () , array () ,
522 array () , array () , array ()) ;
523 for ($i =0; $i <9; $i++) $cols [$i] [] = $this−>board [0] [$i] ;
524

525 // now f i l l in the other l i ne s sub jec t to th i s constraint
526 return ($this−>Fi l lLines (1 , $clusters , $co ls) && $this−>ValidateBoard ($this−>

board)) ;
527 }
528

529

530

531

532

533

534

535 //
∗∗

536 // Board Validation
537

538

539 // Tests i f a board confirms to a l l Sudoku rules
540 function ValidateBoard ($board)
541 {
542 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
543

544 for ($c =0; $c <9; $c++)
545 {
546 $ c e l l = array () ;
547 for ($i =0; $i <9; $i++)
548 {
549 $a = floor ($c / 3) ∗3+ floor ($i / 3) ;
550 $b = (intval ($c) %3)∗3 + intval ($i) %3;
551

552 i f (in_array ($board [$a] [$b] , $ c e l l))
553 {
554 return false ;
555 }
556 i f ($board [$a] [$b] != 0) $ c e l l [] = $board [$a] [$b] ;
557 }
558 }
559 for ($a=0; $a<9; $a++)
560 {
561 $row = array () ;
562 for ($b=0; $b<9; $b++)
563 {
564

565 i f (in_array ($board [$a] [$b] , $row))
566 {
567 return false ;
568 }
569 i f ($board [$a] [$b] != 0) $row [] = $board [$a] [$b] ;
570 }
571 }
572 for ($b=0; $b<9; $b++)
573 {
574 $col = array () ;
575 for ($a=0; $a<9; $a++)
576 {
577

578 i f (in_array ($board [$a] [$b] , $col))
579 {

Page 42 of 62 MCM 2008 Team #3780

580 return false ;
581 }
582 i f ($board [$a] [$b] != 0) $col [] = $board [$a] [$b] ;
583 }
584 }
585

586 return true ;
587 }
588

589

590

591

592

593 //
∗∗

594 // Solver
595

596 // returns the lo ca l weighted normalized ease function of the en t i r e board
597 function WNEF($our_board , $our_mask , $num=−1)
598 {
599 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
600

601 $weights = array (256 , 128 , 64 , 32 , 16 , 8 , 4 , 2 , 1) ;
602

603 $this−>FindChoices ($our_board , $our_mask) ;
604 i f ($num == −1) $num = $this−>NumValues ($our_mask) ;
605 $num = 81−$num;
606

607 i f ($num == 0) return 1 . 0 ;
608

609 $tota l = 0 ;
610 for ($a=0; $a<9; $a++)
611 {
612 for ($b=0; $b<9; $b++)
613 {
614 $count = count ($this−>choices [$a] [$b]) ;
615 i f ($our_mask [$a] [$b] == 0 && $count > 0) $tota l += $weights [$count − 1

] ;
616 }
617 }
618

619 return $tota l / ($weights [0]∗$num) ;
620 }
621

622 // returns an array including a l l unique choices between the given canidates
623 function FindUnique ($canidates)
624 {
625 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
626

627 $unique_spots = array (−2, −2, −2, −2, −2, −2, −2, −2, −2, −2) ;
628 $counts = array (0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0) ;
629 foreach ($canidates as $k=> $ c e l l)
630 {
631 foreach ($this−>choices [$ c e l l [0]] [$ c e l l [1]] as $choice)
632 {
633 $unique_spots [$choice] = $k ;
634 $counts [$choice] ++;
635 }
636 }
637 $unique = array () ;
638 $spot_counts = array () ;

Page 43 of 62 MCM 2008 Team #3780

639 foreach ($unique_spots as $k=>$u)
640 {
641 i f ($counts [$k] == 1)
642 {
643 $unique [$k] = $u ;
644 i f (isset ($spot_counts [$u])) return false ;
645 $spot_counts [$u] = 1;
646 }
647 }
648

649 return $unique ;
650 }
651

652 // Removes a choice from a l l the given canidates
653 function RemoveChoice ($canidates , $val)
654 {
655 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
656

657 foreach ($canidates as $ c e l l)
658 {
659 foreach ($this−>choices [$ c e l l [0]] [$ c e l l [1]] as $key => $choice)
660 {
661 i f ($choice == $val)
662 {
663 unset ($this−>choices [$ c e l l [0]] [$ c e l l [1]] [$key]) ;
664 break ;
665 }
666 }
667 $this−>choices [$ c e l l [0]] [$ c e l l [1]] = NormalizeKeys ($this−>choices [$ c e l l

[0]] [$ c e l l [1]]) ;
668 }
669 }
670

671

672 // Find a l l choices for a l l c e l l s in the board .
673 // $follow_mask : ca l cu la te choices even for unmasked c e l l s
674 // $dependents : ca l cu la te the dependence instead od the choices
675 function FindChoices ($our_board , $our_mask , $follow_mask = true , $dependents = false

)
676 {
677 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
678

679 // clear the array
680 $this−>choices = array () ;
681 for ($a=0; $a<9; $a++)
682 {
683 $this−>choices [$a] = array () ;
684 for ($b=0; $b<9; $b++)
685 {
686 $this−>choices [$a] [$b] = array () ;
687 }
688 }
689

690 // the values in th i s c l u s t e r that we know
691 $cluster = array () ;
692

693 // traverse c l u s t e r s
694 for ($c =0; $c <9; $c++)
695 {
696 $cluster [$c] = array () ;
697 // f i l l in the c l u s t e r values
698 for ($i =0; $i <9; $i++)

Page 44 of 62 MCM 2008 Team #3780

699 {
700 $a = floor ($c / 3) ∗3+ floor ($i / 3) ;
701 $b = (intval ($c) %3)∗3 + intval ($i) %3;
702

703 i f ($our_mask [$a] [$b]) $c luster [$c] [] = $our_board [$a] [$b] ;
704 }
705 }
706

707 // traverse c e l l s
708 for ($a=0; $a<9; $a++)
709 {
710 for ($b=0; $b<9; $b++)
711 {
712 $c = floor ($b / 3) +floor ($a / 3) ∗3;
713

714 // i f th i s place i s not known
715 i f (! $follow_mask || ! $our_mask [$a] [$b])
716 {
717 // find values along horizontal and v e r t i c a l l in e s
718 $l ines = array () ;
719

720 for ($d=0; $d<9; $d++)
721 {
722 i f ($our_mask [$a] [$d]) $ l ines [] = $our_board [$a] [$d] ;
723 i f ($our_mask [$d] [$b]) $ l ines [] = $our_board [$d] [$b] ;
724 }
725

726 // now go through and find a l l values not in the c l u s t e r or along the
l in e s

727 i f (! $dependents)
728 {
729 for ($d=1; $d<=9; $d++)
730 {
731 i f (! (in_array ($d , $c luster [$c]) || in_array ($d , $ l ines)

))
732 {
733 $this−>choices [$a] [$b] [] = $d ;
734 }
735 }
736 }
737 else
738 {
739 $this−>choices [$a] [$b] = array_merge ($c luster [$c] , $ l ines) ;
740 }
741 }
742 }
743 }
744 }
745

746

747 // Set the given c e l l to the given value , f i x ing choices acordingly
748 function SetCell ($a , $b , $val , &$our_board , &$our_mask)
749 {
750 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
751

752 // so l e t ’ s take the move
753 $our_mask [$a] [$b] = 1 ;
754 $our_board [$a] [$b] = $val ;
755

756 $c = $this−>C($a , $b) ;
757 $this−>choices [$a] [$b] = array () ;
758 $this−>RemoveChoice ($this−>ClusterCanidates ($c) , $val) ;

Page 45 of 62 MCM 2008 Team #3780

759 $this−>RemoveChoice ($this−>RowCanidates ($a) , $val) ;
760 $this−>RemoveChoice ($this−>ColCanidates ($b) , $val) ;
761 }
762

763 // Test i f the given board i s determinist ic , aka has only one so lut ion
764 function Unique ($our_board , $our_mask , $num, $brute_force=1)
765 {
766 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
767

768 // i f the board i s solved , then i t i s uniquely so lvable
769

770 $this−>FindChoices ($our_board , $our_mask) ;
771 while (true)
772 {
773 i f ($num >= 81) return true ;
774

775 //$this−>RenderPuzzle ($our_board , $our_mask) ;
776

777

778 // look for c e l l s with jus t one choice
779 $done = false ;
780 for ($a=0; $a<9 && ! $done ; $a++)
781 {
782 for ($b=0; $b<9; $b++)
783 {
784 // i f we only have one choice here
785 i f (count ($this−>choices [$a] [$b]) == 1)
786 {
787 // then we have a move
788 $num++;
789 $this−>SetCell ($a , $b , $this−>choices [$a] [$b] [0] , $our_board ,

$our_mask) ;
790

791 // l e t ’ s get out o f th i s dang thing a wish for a goto to
implement a deep continue

792 $done = true ;
793 $counter = 0;
794 break ;
795 }
796 }
797 }
798 i f ($done) continue ;
799

800 // c l u s t e r
801 $done = false ;
802 for ($c =0; $c <9; $c++)
803 {
804 $unique = $this−>FindUnique ($this−>ClusterCanidates ($c)) ;
805 i f ($unique === false) return false ;
806 foreach ($unique as $k=>$u)
807 {
808 $a = $this−>A($c , $u) ;
809 $b = $this−>B($c , $u) ;
810

811 // then we have a move
812 $num++;
813 $this−>SetCell ($a , $b , $k , $our_board , $our_mask) ;
814

815 // l e t ’ s get out o f th i s dang thing a wish for a goto to
implement a deep continue

816 $done = true ;
817 $counter = 0;

Page 46 of 62 MCM 2008 Team #3780

818 break ;
819 }
820 }
821 i f ($done) continue ;
822

823 // rows
824 $done = false ;
825 for ($a=0; $a<9; $a++)
826 {
827 $unique = $this−>FindUnique ($this−>RowCanidates ($a)) ;
828 i f ($unique === false) return false ;
829 foreach ($unique as $k=>$u)
830 {
831 $b = $u ;
832

833 // then we have a move
834 $num++;
835 $this−>SetCell ($a , $b , $k , $our_board , $our_mask) ;
836

837 // l e t ’ s get out o f th i s dang thing a wish for a goto to
implement a deep continue

838 $done = true ;
839 $counter = 0;
840 break ;
841

842 }
843 }
844 i f ($done) continue ;
845

846 // columns
847 $done = false ;
848 for ($b=0; $b<9; $b++)
849 {
850 $unique = $this−>FindUnique ($this−>ColCanidates ($b)) ;
851 i f ($unique === false) return false ;
852 foreach ($unique as $k=>$u)
853 {
854 $a = $u ;
855

856 // then we have a move
857 $num++;
858 $this−>SetCell ($a , $b , $k , $our_board , $our_mask) ;
859

860 // l e t ’ s get out o f th i s dang thing a wish for a goto to
implement a deep continue

861 $done = true ;
862 $counter = 0;
863 break ;
864

865 }
866 }
867 i f ($done) continue ;
868

869 // l as t r e so r t
870 $least = 100;
871 $least_pos = array (−1, −1) ;
872 $least_choices = array () ;
873 for ($a=0; $a<9; $a++)
874 {
875 for ($b=0; $b<9; $b++)
876 {
877 $n = count ($this−>choices [$a] [$b]) ;

Page 47 of 62 MCM 2008 Team #3780

878 i f ($n != 0 && $n < $least)
879 {
880 $least = $n ;
881 $least_pos = array ($a , $b) ;
882 $least_choices = $this−>choices [$a] [$b] ;
883 }
884 }
885 }
886

887 $result = false ;
888 i f ($brute_force > 0)
889 {
890 foreach ($ least_choices as $c)
891 {
892 $our_mask [$least_pos [0]] [$least_pos [1]] = 0 ;
893 $our_board [$least_pos [0]] [$least_pos [1]] = $c ;
894 $r = $this−>Unique ($our_board , $our_mask , $num+1 , $brute_force−1) ;
895 i f ($r && $result)
896 {
897 $result = false ;
898 break ;
899 }
900 else i f ($r) $result = true ;
901 }
902 }
903

904 // and that i s that
905 return $result ;
906 }
907 }
908

909 // Returns a c e l l to attempt to remove using random s e l e c t i o n
910 // $anneal c o n t r o l l s anealing by indicating the value in the grid that i s associated

with a " f r e e " c e l l
911 function StrategyRandom ($our_board , $our_mask , $persistance , $counter , $anneal = 1)
912 {
913 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
914

915 s t a t i c $prev_value ;
916

917 $spots = array () ;
918 for ($a=0; $a<9; $a++)
919 {
920 for ($b=0; $b<9; $b++)
921 {
922 i f ($our_mask [$a] [$b] == $anneal) $spots [] = array ($a , $b) ;
923 }
924 }
925 shuffle ($spots) ;
926

927 $our_place = $spots [0] ;
928 i f (isset ($spots [1]) && $prev_value == $our_place) $our_place = $spots [1] ;
929 $prev_value = $our_place ;
930 return $our_place ;
931 }
932

933 // Returns a c e l l attempting to remove c e l l s without many choices
934 // $anneal c o n t r o l l s anealing by indicating the value in the grid that i s associated

with a " f r e e " c e l l
935 function StrategyCullLow ($our_board , $our_mask , $persistance , $counter , $anneal = 1

)
936 {

Page 48 of 62 MCM 2008 Team #3780

937 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
938

939 s t a t i c $prev_value ;
940

941 $this−>FindChoices ($our_board , $our_mask , false) ;
942 $choice_rank = array () ;
943 for ($a=0; $a<9; $a++)
944 {
945 for ($b=0; $b<9; $b++)
946 {
947 i f ($our_mask [$a] [$b] == $anneal) $choice_rank [$a∗9+$b] = count ($this−>

choices [$a] [$b])+$persistance [$a] [$b] / $counter ;
948 }
949 }
950 shuf f le_assoc ($choice_rank) ;
951 asort ($choice_rank) ;
952 $keys = array_keys ($choice_rank) ;
953

954 $our_place = array (intval ($keys [0] / 9) , intval ($keys [0])%9) ;
955 i f (isset ($keys [1]) && $prev_value == $our_place) $our_place = array (intval (

$keys [1] / 9) , intval ($keys [1])%9) ;
956 $prev_value = $our_place ;
957 return $our_place ;
958 }
959

960 // Returns a c e l l attempting to remove c e l l s WITH many choices
961 // $anneal c o n t r o l l s anealing by indicating the value in the grid that i s associated

with a " f r e e " c e l l
962 function StrategyCullHigh ($our_board , $our_mask , $persistance , $counter , $anneal = 1

)
963 {
964 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
965

966 s t a t i c $prev_value ;
967

968 $this−>FindChoices ($our_board , $our_mask , false) ;
969 $choice_rank = array () ;
970 for ($a=0; $a<9; $a++)
971 {
972 for ($b=0; $b<9; $b++)
973 {
974 i f ($our_mask [$a] [$b] == $anneal) $choice_rank [$a∗9+$b] = count ($this−>

choices [$a] [$b])+$counter / $persistance [$a] [$b] ;
975 }
976 }
977 shuf f le_assoc ($choice_rank) ;
978 arsort ($choice_rank) ;
979 $keys = array_keys ($choice_rank) ;
980

981 $our_place = array (intval ($keys [0] / 9) , intval ($keys [0])%9) ;
982 i f (isset ($keys [1]) && $prev_value == $our_place) $our_place = array (intval (

$keys [1] / 9) , intval ($keys [1])%9) ;
983 $prev_value = $our_place ;
984 return $our_place ;
985 }
986

987 // Returns a c e l l attempting to remove c e l l s in mostly f i l l e d c l u s t e r s
988 // $anneal c o n t r o l l s anealing by indicating the value in the grid that i s associated

with a " f r e e " c e l l
989 function StrategyTrimCluster ($our_board , $our_mask , $persistance , $counter , $anneal

= 1)
990 {

Page 49 of 62 MCM 2008 Team #3780

991 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
992

993 $amounts = array () ;
994 for ($c =0; $c <9; $c++)
995 {
996 $amounts [$c] = 0 ;
997 for ($i =0; $i <9; $i++)
998 {
999 $a = $this−>A($c , $i) ;

1000 $b = $this−>B($c , $i) ;
1001

1002 i f ($our_mask [$a] [$b] == 1) $amounts [$c] += 1 + $counter / $persistance [$a
] [$b] ;

1003 }
1004 }
1005 shuf f le_assoc ($amounts) ;
1006 i f ($anneal == 1) arsort ($amounts) ;
1007 else asort ($amounts) ;
1008 $keys = array_keys ($amounts) ;
1009

1010 $vals = array (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8) ;
1011 shuffle ($vals) ;
1012 $c = $keys [0] ;
1013 foreach ($vals as $v)
1014 {
1015 $a = $this−>A($c , $v) ;
1016 $b = $this−>B($c , $v) ;
1017

1018 i f ($our_mask [$a] [$b] == $anneal) return array ($a , $b) ;
1019 }
1020

1021 return array (−1, −1) ;
1022 }
1023

1024 // Returns a c e l l attempting to remove c e l l s in mostly rows
1025 // $anneal c o n t r o l l s anealing by indicating the value in the grid that i s associated

with a " f r e e " c e l l
1026 function StrategyTrimRow ($our_board , $our_mask , $persistance , $counter , $anneal = 1

)
1027 {
1028 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
1029

1030 $amounts = array () ;
1031 for ($a=0; $a<9; $a++)
1032 {
1033 $amounts [$a] = 0;
1034 for ($b=0; $b<9; $b++)
1035 {
1036 i f ($our_mask [$a] [$b] == 1) $amounts [$a] += 1 + $counter / $persistance [$a

] [$b] ; ;
1037 }
1038 }
1039 shuf f le_assoc ($amounts) ;
1040 i f ($anneal == 1) arsort ($amounts) ;
1041 else asort ($amounts) ;
1042 $keys = array_keys ($amounts) ;
1043

1044 $vals = array (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8) ;
1045 shuffle ($vals) ;
1046 $a = $keys [0] ;
1047 foreach ($vals as $v)
1048 {

Page 50 of 62 MCM 2008 Team #3780

1049 $b = $v ;
1050

1051 i f ($our_mask [$a] [$b] == $anneal) return array ($a , $b) ;
1052 }
1053

1054 return array (−1, −1) ;
1055 }
1056

1057 // Returns a c e l l attempting to remove c e l l s in mostly f i l l e d columns
1058 // $anneal c o n t r o l l s anealing by indicating the value in the grid that i s associated

with a " f r e e " c e l l
1059 function StrategyTrimCol ($our_board , $our_mask , $persistance , $counter , $anneal = 1

)
1060 {
1061 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
1062

1063 $amounts = array () ;
1064 for ($b=0; $b<9; $b++)
1065 {
1066 $amounts [$b] = 0;
1067 for ($a=0; $a<9; $a++)
1068 {
1069 i f ($our_mask [$a] [$b] == 1) $amounts [$b] += 1 + $counter / $persistance [$a

] [$b] ; ;
1070 }
1071 }
1072 shuf f le_assoc ($amounts) ;
1073 i f ($anneal == 1) arsort ($amounts) ;
1074 else asort ($amounts) ;
1075 $keys = array_keys ($amounts) ;
1076

1077 $vals = array (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8) ;
1078 shuffle ($vals) ;
1079 $b = $keys [0] ;
1080 foreach ($vals as $v)
1081 {
1082 $a = $v ;
1083

1084 i f ($our_mask [$a] [$b] == $anneal) return array ($a , $b) ;
1085 }
1086

1087 return array (−1, −1) ;
1088 }
1089

1090 // Returns a c e l l attempting to remove c e l l s with many dependents
1091 // $anneal c o n t r o l l s anealing by indicating the value in the grid that i s associated

with a " f r e e " c e l l
1092 function StrategyTrimDependents ($our_board , $our_mask , $persistance , $counter ,

$anneal = 1)
1093 {
1094 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
1095

1096 s t a t i c $prev_value ;
1097

1098 $this−>FindChoices ($our_board , $our_mask , false , true) ;
1099

1100 $amounts = array () ;
1101 for ($a=0; $a<9; $a++)
1102 {
1103 for ($b=0; $b<9; $b++)
1104 {
1105 i f ($our_mask [$a] [$b] == $anneal) $amounts [$a∗9+$b] = count ($this−>

Page 51 of 62 MCM 2008 Team #3780

choices [$a] [$b]) + $counter / $persistance [$a] [$b] ;
1106 else $amounts [$a∗9+$b] = 0;
1107 }
1108 }
1109 shuf f le_assoc ($amounts) ;
1110 arsort ($amounts) ;
1111 $keys = array_keys ($amounts) ;
1112

1113 $our_place = array (intval ($keys [0] / 9) , intval ($keys [0])%9) ;
1114 i f (isset ($keys [1]) && $prev_value == $our_place) $our_place = array (intval (

$keys [1] / 9) , intval ($keys [1])%9) ;
1115 $prev_value = $our_place ;
1116 return $our_place ;
1117 }
1118

1119 // Returns a c e l l attempting to remove c e l l s that have many other ex i s t ing of the
same value

1120 // $anneal c o n t r o l l s anealing by indicating the value in the grid that i s associated
with a " f r e e " c e l l

1121 function StrategyTrimValues ($our_board , $our_mask , $persistance , $counter , $anneal =
1)

1122 {
1123 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
1124

1125 $amounts = array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ;
1126 $places = array (array () , array () , array () , array () , array () , array () , array () ,

array () , array () , array ()) ;
1127 for ($a=0; $a<9; $a++)
1128 {
1129 for ($b=0; $b<9; $b++)
1130 {
1131 i f ($our_mask [$a] [$b] == $anneal)
1132 {
1133 $amounts [$our_board [$a] [$b]] += $counter / $persistance [$a] [$b] ;
1134 $places [$our_board [$a] [$b]] [] = array ($a , $b) ;
1135 }
1136 }
1137 }
1138 shuf f le_assoc ($amounts) ;
1139 arsort ($amounts) ;
1140 $vals = array_keys ($amounts) ;
1141

1142 $places = $places [$vals [0]] ;
1143 shuffle ($places) ;
1144

1145 return $places [0] ;
1146 }
1147

1148 // F i l l in the mask
1149 function FillMask ($ d i f f i c u l t y)
1150 {
1151 global $ d i f f i c u l t y _ l e v e l s ;
1152 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
1153

1154

1155 i f ($ d i f f i c u l t y == 0) return $this−>FillMaskRandom () ;
1156

1157 $this−>mask = array (
1158 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1159 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1160 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1161 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,

Page 52 of 62 MCM 2008 Team #3780

1162 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1163 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1164 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1165 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1166 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1167) ;
1168 $this−>persistance = array (
1169 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1170 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1171 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1172 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1173 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1174 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1175 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1176 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1177 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1178) ;
1179

1180 // remove some
1181 $num = 81;
1182

1183 $tota l = 0 ;
1184 $count = 0;
1185

1186 // s e t tuning options
1187 $strateg ies = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] [" s t ra teg ies "] ;
1188 $del ta_strateg ies = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] [" de l ta_s trateg ies "] ;
1189 $del ta_strateg ies_rate = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] [" de l ta_strateg ies_rate "

] ;
1190 $num_anneal_attempts = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] [" num_anneal_attempts "] ;
1191 $failed_max = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] [" failed_max "] ;
1192 $wnef_min = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] ["wnef_min"] ;
1193 $wnef_max = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] ["wnef_max"] ;
1194 $run_cleanup = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] [" run_cleanup "] ;
1195 $brute_force = $ d i f f i c u l t y _ l e v e l s [$ d i f f i c u l t y] [" brute_force "] ;
1196

1197 $annealings = array (
1198 array ("Sudoku" , " StrategyRandom ") ,
1199 array ("Sudoku" , " StrategyCullLow ") ,
1200 array ("Sudoku" , " StrategyTrimCluster ") ,
1201 array ("Sudoku" , " StrategyTrimRow ") ,
1202 array ("Sudoku" , " StrategyTrimCol ") ,
1203 array ("Sudoku" , " StrategyTrimDependents ") ,
1204 array ("Sudoku" , " StrategyTrimValues ") ,
1205) ;
1206

1207 $best_mask = $this−>mask ;
1208 $best_wnef = 1;
1209 $best_num = 0;
1210 $wnef_f irst = 0 ;
1211 $persistance_timer = 1;
1212 $wnef = 1;
1213 for ($anneal_attempts =0; $anneal_attempts<$num_anneal_attempts ; $anneal_attempts

++)
1214 {
1215 $fai led_count = 0;
1216 while (true)
1217 {
1218 shuffle ($strateg ies) ;
1219 $spot = call_user_func ($strateg ies [0] , $this−>board , $this−>mask , $this

−>persistance , $persistance_timer) ;
1220 //$persistance_t imer += 1;

Page 53 of 62 MCM 2008 Team #3780

1221 i f ($fai led_count%$del ta_strateg ies_rate == 0)
1222 {
1223 $strateg ies = array_merge ($strategies , $de l ta_strateg ies) ;
1224 }
1225

1226 $a = $spot [0] ;
1227 $b = $spot [1] ;
1228

1229 // Sentinal value for no spot l e f t
1230 i f ($a == −1) break ;
1231

1232 i f ($this−>mask[$a] [$b] != 0)
1233 {
1234 $this−>mask[$a] [$b] = 0 ;
1235 i f (! $this−>Unique ($this−>board , $this−>mask , $num−1, $brute_force)

)
1236 {
1237 $this−>mask[$a] [$b] = 1 ;
1238

1239 $this−>persistance [$a] [$b]++;
1240 $fai led_count ++;
1241 }
1242 else
1243 {
1244

1245 $this−>persistance [$a] [$b] = 1 ;
1246 $num−=1;
1247 $fai led_count = 0;
1248 }
1249 }
1250 else
1251 {
1252 $fai led_count ++;
1253 }
1254 $wnef = $this−>WNEF($this−>board , $this−>mask , $num) ;
1255 i f ($wnef <= $wnef_min || $fai led_count >= $failed_max) break ;
1256 }
1257 i f ($wnef_f irst == 0) $wnef_f irst = $wnef ;
1258

1259 i f ($best_wnef > $wnef)
1260 {
1261 $best_mask = $this−>mask ;
1262 $best_wnef = $wnef ;
1263 $best_num = $num;
1264 }
1265 else
1266 {
1267 $this−>mask = $best_mask ;
1268 $wnef = $best_wnef ;
1269 $num = $best_num ;
1270 }
1271

1272 i f ($anneal_attempts >= $num_anneal_attempts && $wnef > $wnef_max)
$num_anneal_attempts+=2;

1273

1274 i f ($anneal_attempts < $num_anneal_attempts−1)
1275 {
1276 $num_times = 1+rand () %3;
1277 for ($i =0; $i <$num_times ; $i++)
1278 {
1279 shuffle ($annealings) ;
1280 $spot = call_user_func ($annealings [0] , $this−>board , $this−>mask ,

Page 54 of 62 MCM 2008 Team #3780

$this−>persistance , $persistance_timer , 0) ;
1281 $this−>mask[$spot [0]] [$spot [1]] = 1 ;
1282 $num += 1;
1283 }
1284 echo "\n" ;
1285 }
1286 }
1287

1288

1289 // endgame
1290 i f ($wnef > $run_cleanup)
1291 {
1292 $done = false ;
1293 for ($a=0; $a<9 && ! $done ; $a++)
1294 {
1295 for ($b=0; $b<9 && ! $done ; $b++)
1296 {
1297 i f ($this−>mask[$a] [$b] != 0)
1298 {
1299 $this−>mask[$a] [$b] = 0 ;
1300 i f (! $this−>Unique ($this−>board , $this−>mask , $num−1, 1))
1301 {
1302 $this−>mask[$a] [$b] = 1 ;
1303 }
1304 else
1305 {
1306 $num−=1;
1307 $wnef = $this−>WNEF($this−>board , $this−>mask , $num) ;
1308 i f ($wnef < $wnef_min) $done = true ;
1309 }
1310 }
1311 }
1312 }
1313 }
1314

1315 $wnef = $this−>WNEF($this−>board , $this−>mask , $num) ;
1316 return array ($wnef_first , $wnef) ;
1317 }
1318

1319 // F i l l s in a mask by sucess ive removal o f c e l l s
1320 function FillMaskRandom ()
1321 {
1322 $_Pro f i l er_ = new P r o f i l e r (__FUNCTION__, __LINE__) ;
1323

1324

1325 $this−>mask = array (
1326 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1327 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1328 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1329 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1330 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1331 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1332 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1333 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1334 array (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1) ,
1335) ;
1336

1337 // remove some
1338 $posit ions = array () ;
1339 for ($a=0; $a<9; $a++)
1340 {
1341 for ($b=0; $b<9; $b++)

Page 55 of 62 MCM 2008 Team #3780

1342 {
1343 $posit ions [] = array ($a , $b) ;
1344 }
1345 }
1346 shuffle ($pos i t ions) ;
1347

1348 $pos = 0;
1349 $num = 81;
1350

1351 $fa i l ed = count ($pos i t ions) ;
1352

1353 foreach ($pos i t ions as $key=>$pos)
1354 {
1355 $a = $pos [0] ;
1356 $b = $pos [1] ;
1357 $this−>mask[$a] [$b] = 0 ;
1358

1359 i f (! $this−>Unique ($this−>board , $this−>mask , $num−1))
1360 {
1361 $this−>mask[$a] [$b] = 1 ;
1362 }
1363 else $num−−;
1364 }
1365 $wnef = $this−>WNEF($this−>board , $this−>mask , $num) ;
1366 return array ($wnef , $wnef) ;
1367 }
1368 }
1369

1370 ?>

Listing 4: Script to render Sudoku puzzles.
1 <?php
2 include (’ sudoku . php ’) ;
3

4 $puzzle = new Sudoku () ;
5

6 $d = 0;
7 i f (isset ($_GET["d"])) $d = $_GET["d"] ;
8

9 i f (! isset ($_COOKIE[" sudoku_board "]))
10 {
11 /∗ Debug console
12 echo "< center ><textarea rows=10 co l s =80 >";
13 ∗/
14

15 i f (! $puzzle−>FillBoard ()) echo " f a i l e d " ;
16 $res = $puzzle−>FillMask ($d) ;
17

18 $wnef = $res [1] ;
19 $ d i f f i c u l t y = MakeDifficulty ($wnef) ;
20 /∗
21 echo "\n\n\n " ;
22 print_r ($prof i l e_data) ;
23 echo "</ textarea ></center >\n\n " ;
24 ∗/
25

26 }
27 else
28 {
29

30 $puzzle−>mask = array (

Page 56 of 62 MCM 2008 Team #3780

31 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
32 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
33 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
34 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
35 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
36 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
37 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
38 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
39 array (0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0) ,
40) ;
41 $puzzle−>board = $puzzle−>mask ;
42

43 $vals_a = explode (" : " , $_COOKIE[" sudoku_board "]) ;
44

45 $ d i f f i c u l t y = $vals_a [8 1] ;
46 $wnef = $vals_a [8 2] ;
47

48 unset ($vals_a [81]) ;
49 unset ($vals_a [82]) ;
50

51 foreach ($vals_a as $key => $n)
52 {
53 i f ($n != 0)
54 {
55 $i = intval ($key) ;
56 $puzzle−>mask[$i / 9] [$i%9] = 1;
57 $puzzle−>board [$i / 9] [$i%9] = $n ;
58 }
59 }
60 }
61 // s e t cookie
62 $cookie_vals = Array () ;
63 for ($a=0; $a<9; $a++)
64 {
65 for ($b=0; $b<9; $b++)
66 {
67 i f ($puzzle−>mask[$a] [$b])
68 {
69 $cookie_vals [2+$a∗9+$b] = $puzzle−>board [$a] [$b] ;
70 }
71 else
72 {
73 $cookie_vals [2+$a∗9+$b] = 0;
74 }
75 }
76 }
77

78 $cookie_vals [] = $ d i f f i c u l t y ;
79 $cookie_vals [] = $wnef ;
80

81 setcookie (" sudoku_board " , implode (" : " , $cookie_vals) , time () +32000000) ;
82

83 ?>
84 <html xmlns=" http : / /www.w3. org /1999/ xhtml " xml : lang="en">
85 <head>
86 < t i t l e >Sudoku</ t i t l e >
87

88 <scr ip t language=" javascr ipt " src=" js−include / mootools−release −1.11. j s "><!−− −−></
scr ipt >

89 <scr ip t language=" javascr ipt " src=" s c r ip t . j s "><!−− −−></scr ipt >
90 <style >
91 body

Page 57 of 62 MCM 2008 Team #3780

92 {
93 padding : 0 ;
94 margin : 0 ;
95 }
96

97 # d i f f i c u l t y
98 {
99 width : 100%;

100 text−align : center ;
101 font−s ize : 300%;
102 font−weight : bold ;
103 co lor : #668;
104 }
105

106 #wnef
107 {
108 margin−top : −1em;
109 margin−bottom : 1em;
110 width : 100%;
111 text−align : center ;
112 co lor : #668;
113 font−s ize : 80%;
114 }
115

116 #board ,
117 #board2
118 {
119 width : 1em;
120 height : 1em;
121

122 font−s ize : 20em;
123

124 margin : auto ;
125

126 border−s ty le : s o l i d ;
127 border−width : 1px ;
128 border−co lor : blue ;
129

130 background−co lor : black ;
131 }
132

133 . large_square
134 {
135 width : 32.4%;
136 height : 32.4%;
137

138 font−s ize : 32.4%;
139 f l o a t : l e f t ;
140

141 margin : .4%;
142

143 background−co lor : grey ;
144 }
145

146 . small_square
147 {
148 width : 31.3%;
149 height : 31.3%;
150

151 font−s ize : 20%;
152 l ine−height : 160%;
153

Page 58 of 62 MCM 2008 Team #3780

154 f l o a t : l e f t ;
155

156 text−align : center ;
157 vert i ca l−align : center ;
158

159 margin : 1%;
160

161 background−co lor : white ;
162

163 cursor : pointer ;
164 }
165

166 div . small_square : hover
167 {
168 background−co lor : #FAA;
169 }
170

171 . bad
172 {
173 co lor : #A11 ;
174 }
175

176 . s t a t i c
177 {
178 co lor : #11A;
179

180 cursor : default ;
181 }
182

183 #menu
184 {
185 text−align : center ;
186 margin : 0.4em;
187 }
188

189 #menu a , #menu s e l e c t
190 {
191 font−weight : bold ;
192 co lor : #A48 ;
193

194

195 border−s ty le : dotted ;
196 border−width : 1px ;
197 border−co lor : #D8A;
198

199 padding : 0.2em;
200

201 cursor : pointer ;
202 }
203

204 #menu a : hover , #menu s e l e c t : hover
205 {
206 co lor : #848;
207

208 border−s ty le : s o l i d ;
209 }
210 </ style >
211 </head>
212 <body>
213 <div id=" d i f f i c u l t y "> <?php echo $ d i f f i c u l t y ; ?> </ div >
214 <div id=" wnef "> <?php echo number_format ($wnef , 3) ; ?> </ div >
215 <div id=" board ">

Page 59 of 62 MCM 2008 Team #3780

216 <?php
217 // render
218 // $puzzle−>Unique ($puzzle−>mask , 80 , f a l s e) ;
219 for ($c =0; $c <9; $c++)
220 {
221 echo "<div c lass =\" large_square\"> " ;
222

223 for ($i =0; $i <9; $i++)
224 {
225 $a = floor ($c / 3) ∗3+ floor ($i / 3) ;
226 $b = (intval ($c) %3)∗3 + intval ($i) %3;
227

228 $keep = $puzzle−>mask[$a] [$b] ;
229 echo "<div c lass =\"small_square " . ($keep ? " s t a t i c " : " ") . " c e l l _ $ c

col_$b row_$a\" id =\"$c " . " _$a " . " _$b\"> " ;
230

231 i f ($keep)
232 {
233 echo $puzzle−>board [$a] [$b] ;
234 }
235 else
236 {
237 // echo "<small >" . $puzzle−>board [$a] [$b] ." </ small >" ;
238 }
239

240 echo " </ div >" ;
241 }
242 echo " </ div >" ;
243 }
244 ?>
245 </ div >
246 <div id="menu">
247 <s e l e c t id=" s e l _ d i f f i c u l t y ">
248 <option value ="0">Random</ option >
249 <option value ="1">Easy </ option >
250 <option value ="2">Medium</ option >
251 <option value ="3">Hard</ option >
252 <option value ="4">Evil </ option >
253 </ se lect >
254 <a oncl i ck="NewBoard () ">New Puzzle <a oncl i ck=" Clear () ">Clear Puzzle
255 </ div >
256 </body>
257 </html>

Listing 5: Tuning parameters for generator algorithm.
1 <?php
2

3 $ d i f f i c u l t y _ l e v e l s = array (
4 1 => array (
5 " s t rateg ies " => array (
6 array ("Sudoku" , " StrategyCullHigh ") ,
7) ,
8 " de l ta_s trateg ies " => array () ,
9 " de l ta_strateg ies_rate " => 50 ,

10 " num_anneal_attempts " => 1 ,
11 " failed_max " => 5 ,
12 "wnef_min" => 0.32 ,
13 "wnef_max" => 0.35 ,
14 " run_cleanup " => 0.4 ,
15 " brute_force " => 0 ,
16) ,

Page 60 of 62 MCM 2008 Team #3780

17

18 2 => array (
19 " s t rateg ies " => array (
20 array ("Sudoku" , " StrategyRandom ")
21) ,
22 " de l ta_s trateg ies " => array (
23 array ("Sudoku" , " StrategyRandom ")
24) ,
25 " de l ta_strateg ies_rate " => 40 ,
26 " num_anneal_attempts " => 5 ,
27 " failed_max " => 2 ,
28 "wnef_min" => 0.28 ,
29 "wnef_max" => 0.28 ,
30 " run_cleanup " => 0.28 ,
31 " brute_force " => 0 ,
32) ,
33 3 => array (
34 " s t rateg ies " => array (
35 array ("Sudoku" , " StrategyTrimValues ") ,
36 array ("Sudoku" , " StrategyCullLow ") ,
37 array ("Sudoku" , " StrategyTrimCluster ") ,
38 array ("Sudoku" , " StrategyTrimRow ") ,
39 array ("Sudoku" , " StrategyTrimCol ") ,
40 array ("Sudoku" , " StrategyTrimDependents ") ,
41) ,
42 " de l ta_s trateg ies " => array (
43 array ("Sudoku" , " StrategyRandom ") ,
44) ,
45 " de l ta_strateg ies_rate " => 10 ,
46 " num_anneal_attempts " => 10 ,
47 " failed_max " => 3 ,
48 "wnef_min" => 0.2 ,
49 "wnef_max" => 0.2 ,
50 " run_cleanup " => 0.2 ,
51 " brute_force " => 0 ,
52) ,
53 4 => array (
54 " s t rateg ies " => array (
55 array ("Sudoku" , " StrategyTrimValues ") ,
56 array ("Sudoku" , " StrategyCullLow ") ,
57 array ("Sudoku" , " StrategyCullLow ") ,
58 array ("Sudoku" , " StrategyCullLow ") ,
59 array ("Sudoku" , " StrategyCullLow ") ,
60 array ("Sudoku" , " StrategyCullLow ") ,
61 array ("Sudoku" , " StrategyCullLow ") ,
62 array ("Sudoku" , " StrategyCullLow ") ,
63 array ("Sudoku" , " StrategyTrimCluster ") ,
64 array ("Sudoku" , " StrategyTrimRow ") ,
65 array ("Sudoku" , " StrategyTrimCol ") ,
66 array ("Sudoku" , " StrategyTrimDependents ") ,
67) ,
68 " de l ta_s trateg ies " => array (
69 array ("Sudoku" , " StrategyRandom ") ,
70) ,
71 " de l ta_strateg ies_rate " => 10 ,
72 " num_anneal_attempts " => 100 ,
73 " failed_max " => 3 ,
74 "wnef_min" => 0 ,
75 "wnef_max" => 0.10 ,
76 " run_cleanup " => 0 ,
77 " brute_force " => 2 ,
78) ,

Page 61 of 62 MCM 2008 Team #3780

79) ;
80 ?>

Listing 6: Python script to extract GNOME Sudoku puzzles.
1 import sys
2 import getopt
3 from gnome_sudoku . sudoku_maker import SudokuMaker
4

5 def print_puzzles (sm, f , min_d , max_d) :
6 puzzles = [sm. get_puzzle (d . ca l cu late ()) for d in sm. l i s t _ d i f f i c u l t i e s () i f (d . ca l cu late ()

> min_d) and (d . ca l cu late () < max_d)]
7 for g , d in puzzles :
8 f . write (g . replace (" " , " ") + "\t " + d . value_string () + "\n")
9

10 shortargs = " e :m: h : v :w: "
11 longargs = [" easy=" "medium=" " hard=" " e v i l =" " writemode="]
12

13 def main (argv) :
14 default = " contro ls / gnome−sudoku / gnome−sudoku−"
15 easypath = default + " easy "
16 medpath = default + "med"
17 hardpath = default + " hard "
18 evi lpath = default + " e v i l "
19 writemode = "w"
20

21 opts , args = getopt . getopt (sys . argv [1 :] , shortargs , longargs)
22

23 for opt , arg in opts :
24 i f opt in ("−e " , "−−easy ") :
25 easypath = arg
26 i f opt in ("−m" , "−−medium") :
27 medpath = arg
28 i f opt in ("−h" , "−−hard ") :
29 hardpath = arg
30 i f opt in ("−v" , "−−e v i l ") :
31 evi lpath = arg
32 i f opt in ("−w" , "−−writemode ") :
33 writemode = arg
34

35 ef = open (easypath , writemode) ;
36 mf = open (medpath , writemode) ;
37 hf = open (hardpath , writemode) ;
38 vf = open (evilpath , writemode) ;
39

40 try :
41 sm = SudokuMaker (batch_size =10)
42 except exceptions . EOFError :
43 pass
44

45 sm. make_batch ()
46

47 print_puzzles (sm, ef , 0 .00 , 0 .25)
48 ef . c l ose ()
49

50 print_puzzles (sm, mf , 0.25 , 0 .50)
51 mf . c lose ()
52

53 print_puzzles (sm, hf , 0 .50 , 0 .75)
54 hf . c l ose ()
55

56 print_puzzles (sm, vf , 0 .75 , 1 .00)

Page 62 of 62 MCM 2008 Team #3780

57 vf . c l ose ()
58

59

60 i f __name__ == " __main__ " :
61 main (sys . argv)

2 Screenshots of Puzzle Generator

(a) (b)

(c) (d)

Figure 15: Screenshots of puzzle generator.

	Introduction
	Statement of Problem
	Relevance of Sudoku
	Goals
	Rules of Sudoku
	Terminology and Notation
	Indexing
	Formal Rules of Sudoku
	Example Puzzles

	Background
	Common Solving Techniques
	Naked Pair
	Naked Triplet
	Hidden Pair
	Hidden Triplet
	Multi-Line

	Previous Works
	SudokuExplainer
	QQWing
	GNOME Sudoku

	Metric Design
	Overview
	Assumptions
	Mathematical Basis for WNEF
	Complexity

	Metric Calibration and Testing
	Control Puzzle Sources
	Testing Method
	Defining Difficulty Ranges
	Information Collection
	Statistical Analysis of Control Puzzles

	Choice of Weight Function.

	Generator Algorithm
	Overview
	Detailed Description
	Completed Puzzle Generation
	Cell Removal
	Uniqueness Testing

	Pseudocode
	Completed Board Generation
	Random Masking
	Tuned Masking
	Uniqueness Testing

	Complexity Analysis
	Parameterization
	Complexity of Completed Puzzle Generation
	Complexity of Uniqueness Testing and Random Filling
	Profiling Method
	WNEF vs Running Time

	Testing
	WNEF as a Function of Design Choices
	Hypothesis Testing

	Strengths and Weaknesses
	Conclusions
	References
	Source Code
	Screenshots of Puzzle Generator

