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Abstract

In this paper, complexity theory is presented as a language for de-

scribing problems in computer science. This development proceeds by the

construction of computational models such as the deterministic Turing

machine, and by the construction of complexity classes such as P and NP.

The language of complexity theory is then applied to three key appli-

cations: the implications for physical theories which violate the Church-

Turing Thesis, the impact of computational complexity upon evaluating

physical theories, and the objective bene�ts of quantum computers.
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Part I

Preliminaries

1 Computability Theory

As computers were �rst being invented, a natural question emerged: what can
a computer do? In the wake of upsets such as those delivered to Hilbert's
program to axiomatize mathematics by Gödel's famous theorems, the limits
of what computers could do were not obvious. In time, that simple question
blossomed into an entire rich �eld of mathematics called computability theory.

To see how such a seemingly simple question can quickly become confound-
ing, consider the famous Halting Problem. Speaking informally, the Halting
Problem (often written halting) asks whether a program X will ever halt if
run with a description of itself as input. That is, will X (X) return any output,
or will it continue to execute forever? Suppose that there exists a program H
which answers halting; that is, H (X) always halts and returns a value such
that H (X) is true if and only if X (X) halts. Then, we can use H to construct
a program P which acts in a most peculiar fashion. Given an input X, P (X)
will stop if H (X) is false and will enter an in�nite loop if H (X) is true. Now,
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consider what happens if we execute P (P ). Our peculiar program will halt if
and only if H (P ) is false, which contradicts that H (P ) is true if and only if
P (P ) halts! Since we only assumed that a program solving halting exists, we
are forced to conclude that no program can ever solve halting.

Thus, there exists at least one well-de�ned mathematical problem which no
computer will ever be able to solve. Given that, why should there be only
one such problem? Of course, in order to make this argument sound, we must
develop a vernacular for describing the processes of computation, and we must
develop a rigorous model of computation about which we may make precise
mathematical statements.

2 Models of Computation

At their most basic, computers are devices which are given some input, manip-
ulate that input and return an output. Thus, any model of computation must
somehow capture these dynamics. We present here a few di�erent attempts
at modeling these properties in a precise and formal way. Our treatment of
this topic shall be incomplete, as many important models of computation are
not directly relevant to our goals here. In particular, though models such as
push-down automata, context-free grammars, Minsky machines and the many
varieties of cellular automata are very interesting and useful in their own right,
this article is not intended to be a full compendium of interesting models of
computation. Rather, we restrict our focus here to those classes that either
are directly used in constructing complexity theoretic objects, or that illustrate
concepts needed to do so.

2.1 Problems, Functions and Languages

Before we can intelligently discuss a model of computation, we must �rst de�ne
a bit of terminology so that we may state our goals. Historically, the vocabulary
used to describe computation in an abstract way has been borrowed from lin-
guistics. This history follows from one of the earliest attempts to nail down the
limitations of computation: interpreting human languages. This programme of
research produced one of the earliest taxonomies of computational models, the
Chomsky hierarchy. Though this hierarchy failed to produce a useful under-
standing of human languages, it provided very valuable insights into the nature
of computation, and its relation to languages. It is this linguistic in�uence that
provides much of the terminology that we now use.

For instance, almost always when we discuss a computation problem, we
consider a machine of some kind that takes as input a string of symbols drawn
from some alphabet. An alphabet is some arbitrary set of distinct symbols, and is
usually denoted by Σ. In this article, when we do not explicitly say otherwise,
we shall presume that we are working with the binary alphabet Σ = {0, 1}.
Next, a string is a �nite (and possibly zero-length) sequence of symbols drawn
from an alphabet. For example, x = 0110 is a string over Σ = {0, 1}. We call
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a string x with no symbols the empty string, and write it as ε. The set of all
strings over an alphabet Σ is denoted Σ∗, where the superscript star indicates
�a �nite sequence drawn from.�

Most often, we shall be interested in Boolean functions of the form f :
{0, 1}∗ → {0, 1}. These functions may be interpreted as de�ning a property
which a particular string can either have or not have. As an example, consider
the function:

f (x) =

{
0 if x has an odd number of 0 symbols

1 if x has an even number of 0 symbols

It is easy to see that this function is well-de�ned (has exactly one value for
each string x). Informally, f (x) = 1 is a �yes,� and f (x) = 0 is a �no.� Often,
it will be useful to shift perspective by letting Lf = { x ∈ Σ∗ | f (x) = 1 } be
the language of strings for which f gives a �yes� answer. Intuitively, we may
think of a language as a set of strings that is allowed by some set of rules.
Shifting momentarily to human languages, we may represent English as a set
of sentences which are permissible by the rules of English grammar (setting
aside the inconvenient fact that de�ning a single set of deterministic rules is an
impossible task in and of itself). By analogy, a Boolean function tells us what
strings we permit to be in a given language.

Finally, a machine is some device that takes a string, performs some work
on the string and either returns a �yes� or �no,� or fails to halt. We say that a
machine M accepts a string x if M returns �yes� when given x as input. If a
machine M halts for all inputs, then there is then a very natural Boolean func-
tion corresponding to M : does M accept a string x? This function is so useful
that we often simply write M (x) to mean the Boolean function corresponding
to the machine M . We can extend this de�nition to machines which may not
halt by introducing another symbol ↗ into our output alphabet and by letting
M (x) =↗ ifM does not halt when given x as input. There thus corresponds to
each machine M a language LM of strings accepted by M , called the language
decided by M .

With this terminology under our belt, we can now precisely state what we
want to be able to do with a computational model. Given a Boolean function
f , we wish to construct a machine M such that Lf = LM , and such that M
halts on all input. If we have such a machine, we say that M solves Lf , or that
M solves f .

2.2 Deterministic Finite Automata

One of the simplest models of a computer is the deterministic �nite automata
(DFA) model. For a DFA, the internal state of the computer is one of a �nite
set of discrete states. To each state, there corresponds a set of rules which
specify when the DFA should transition to another state. A DFA looks through
its input, one symbol at a time, transitioning based on the symbol pulled from
the input. When the input runs out, either the DFA is in a specially-marked
accepting state, or it isn't. In the former case, the DFA returns a �yes� answer.
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Figure 1: A DFA that accepts strings with an even number of zeros.

A common way of representing a DFA is by means of a directed graph, such
as the one shown in Figure 1. In such diagrams, the states of a DFA are
drawn as circles with arrows between them. Accepting states are shown by
double-line borders, while starting states are indicated by special names (such
as �start�). The transitions of the DFA are represented by arrows, labeled with
the corresponding input symbols.

As a concrete example, let's run the DFA in Figure 1, designed to accept
strings with an even number of �0� symbols, with the input �010�. The machine
starts o� at �start�, then reads a �0� from the input. It then follows the �0�
arrow to the �odd� state. Next, it reads a �1� from the input, and thus follows
the �1� arrow from �odd� back to itself. The machine then reads the last �0�
from the input, following the �0� arrow to �even�. Since the input has been fully
read, the machine stops on the �even� state. Since this state is accepting, the
machine returns a �yes� answer.

The deterministic �nite automata model is useful in that it is relatively
simple, but there are some very basic languages that are unsolvable for DFA
machines, limiting its usefulness. As an example, it can be shown via a useful
result known as the Pumping Lemma (see Theorem 3) that the language of bal-
anced parentheses (that is, the language over Σ = {(, )} such that each opening
paren is matched by exactly one closing paren somewhere later in the string) is
unsolvable for DFAs. Since this language can be rather easily decided by mod-
ern computers, it is clear that DFAs are not powerful enough to encapsulate
what we mean by a computer.

2.3 Turing Machine

To solve these problems, we introduce the Turing Machine (TM) model of com-
putation. At �rst, Turing machines seem highly unintuitive and seem to have
little to do with computers, but as we will see, they are the most powerful model
for classical computation that we have yet devised.

The key to Turing machines is that we essentially introduce a tape to a
DFA, and allow the DFA to write to the tape as it proceeds. For our purposes,
a tape is an one-dimensional array of memory cells extending to in�nity in
one direction. Each of the cells on a tape can store a symbol drawn from a
tape alphabet Γ, which must be strictly bigger than the input alphabet Σ.
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Figure 2: Executing a single step of a Turing machine.

When a Turing machine starts, the tape is initially �lled with the input to the
machine surrounded by in�nitely many �blank cells�; that is, cells holding a
special �blank� value which we shall write as t. Next, we imagine that there
is a read/write head that points at a single cell on the tape, and which can
decide to move either left or right after looking at its cell and possibly writing a
new value. To make this decision, the head can be in one of a �nite number of
states, much like our DFAs. The head transitions between states depending on
the value of the cell beneath it, and each transition is labeled with a new value
to be recorded and a direction to move.

Formally, we say that a Turing machineM is a tupleM = (Q,Σ,Γ, δ), where
Q is the set of possible states for the machine, Σ is the input alphabet, Γ is the
tape alphabet (which does not include the special blank symbol) and δ is the
transition function δ : Q × Γ → Q × Γ × {←, •,→} which indicates the new
state, the new tape symbol to be written and the direction (if any) to move the
head. We require that Q include two special states, qaccept and qreject. If the
machine ever enters either state, it accepts or rejects the input accordingly.

Following our earlier notation, we shall say that a Turing machineM decides
a decision problem f if M (x) = 1 if and only if f (x) = 1. Note that this
de�nition allows M to loop forever if the answer to a decision problem is �no.�
That is, we only require that M halts if f (x) = 1.

2.3.1 Why the Turing machine is descriptive.

At �rst, the Turing machine may seem overly esoteric and arcane. Why not
model computation in a way that more closely resembles the familiar von Neu-
mann architecture? The short answer is that the we can: the dynamics of a
Turing machine can be shown to be equivalent to those of any other classi-
cal computational model that we are interested in, up to some relatively small
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overhead. Moreover, a Turing machine has some very nice properties that make
writing proofs about its capabilities much easier. First and foremost, the dynam-
ics of Turing machines are local. We only ever need to describe the interaction
of the head with its immediate neighbors. Second, a Turing machine can be
described by a relatively terse set of information. In order to reproduce a given
TM, we need to know how large Q, Σ and Γ are, and we need to know δ. Third,
the axioms governing a Turing machine are much easier to describe. In order to
describe a von Neumann architecture, we must know what the instruction set is,
as well as knowing what program is being run. By contrast, all Turing machines
di�er only in their transition functions and the sizes of their alphabets.

Taking these together, we �nd that despite their apparent strangeness, Tur-
ing machines are well-suited to formal descriptions of computational processes.
In practice, the overhead factor is large enough that building a physical Turing
machine is an exercise in futility, but this overhead is well-behaved enough that
all of our proofs will transform nicely between various computational models,
with very few exceptions, leaving us free to choose a model based upon their
mathematical appeal rather than the practicality of their physical realizations.

2.4 Non-deterministic Turing Machine

We are also interested in what computations can be quickly veri�ed, irrespective
of how long they take. To do so, we extend our idea of a Turing machine in a
way that is, at least initially, highly unintuitive. Rather than giving our Turing
machine a single transition function δ, we imbue each machine with a pair of
transition functions δ0, δ1, and say that the machine transitions between sets of
states Q,Q′ by Q′ = { δ0 (q) , δ1 (q) | q ∈ Q }, and that each computation branch
has its own copy of the tape1. Machines operating in this manner are called non-
deterministic Turing machines (NTM). We then say that an NTM M accepts a
string x if any set of states Q reached by a transition from the initial state and
tape includes a special state Qaccept. Note that we can �trace� the accepting
branch ofM by noting at each transition whether the δ0 or δ1 transition function
will eventually lead to Qaccept. Thus, to verify an accepting computation of M ,
we need only run a deterministic Turing machine M ′, choosing to apply either
δ0 or δ1 at each transition according to some witness string. Thus, an NTM is
a way of formalizing our idea of what it means to verify a computation, even
if many of the details of that computation are unknown to us. Equivalently,
non-determinism allows us to model what guesses allow us to perform; an NTM
essentially tries each possible branch and selects only those which lead to an
accepting state.

1Note that this construction of Q′ is slightly misleading, as we have said that δ0 and δ1
are functions to tuples (Q× Γ× {←, •,→}). For brevity, I have adopted a notation whereby
one only considers the member of Q in each tuple when constructing Q′.
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Figure 3: Boolean circuit calculating majority for length 3 strings.

2.5 Boolean Circuit Model

It is important to note that not all models of computation describe the process
of computation as some machine stepping through the steps of an algorithm.
Indeed, one can start by looking at the logical operations that must be performed
during computation, and de�ne a model of a circuit that implements these
operations as gates. We de�ne a gate to be one of a set of �pre-made� Boolean
functions, such as not, and and or (written ¬, ∧ and ∨, respectively). These
gates are then combined with input bits (that is, symbols from the alphabet
Σ = {0, 1}) to produce output bits.

For instance, if we want to compute the majority function (which is 1 if
and only if at least half of the input bits are 1) for a string of bits of length
3, we can combine a few and and or gates. Let the input string x = x1x2x3.
Then, majority (x) = 1 if and only if at least two bits are one, and so we can
or together an and each possible pairing of bits:

majority (x) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

This expression for majority tells us that the input bits are combined in the
respective and gates to produce three intermediate bits, which are then in turn
combined into a �nal output bit. Of course, it is often easier to represent this
kind of an expression as a directed acyclic graph, where each gate is drawn as
a node with directed edges from the inputs to the outputs. One such graph is
shown in Figure 3.

The graph representation makes the dependence between the gates, inputs
and the output more clear, and allows us to quickly judge the relative size and
depth of the circuit. We say that a circuit with n gates has size n, and that the
depth of a circuit is the length of the longest path from an input to the output.
For example, the circuit for majority shown above has size 4 and depth 2.

Of course, the majority circuit shown in Figure 3 only works for strings
of length exactly 3, so we still need to somehow extend our model to allow for
arbitrary-length input strings. The way to do this is to discuss not individual
circuits, but rather families of circuits corresponding to di�erent input lengths.
In order to prevent certain kinds of absurdities, we will often require that each
circuit in a family of circuits be constructable by a Turing machine bounded by
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Figure 4: Emulating large fanin with large depth.

some reasonable function of the length. This requirement is called uniformity,
and will be revisited in Section 8.1.

At times, we may also place limitations on the maximum fanin of a Boolean
circuit or family thereof. The fanin of a circuit is de�ned as the largest number of
inputs that a gate acts upon. For instance, the circuit in Figure 3 has a fanin of
3. Since it is di�cult to make arbitrarily large logic gates, we generally consider
low fanin to be less costly in the same way that we consider size and depth
(corresponding respectively to space and time resources in a Turing machine)
to be resources for computation. In fact, it is often possible to trade between
fanin and depth. For instance, the depth 2, fanin 2 circuit shown in Figure 4
emulates a single gate of fanin 4.

Part II

Complexity Theory

Complexity theory is, informally, the study of what computers can do quickly.
This is largely done by studying sets of languages called complexity classes

that share some property, such as being decidable in what is called polynomial

time. Our goal shall be to introduce some of the most fundamental concepts
of complexity theory by constructing some of the more important complexity
classes, developing our conceptual understanding as we go. Thus, our approach
will be to take a tour of the wide range of classes with which complexity theorists
concern themselves.

3 The Polynomial Hierarchy

Our tour starts with the construction of a series of complexity classes based
upon the time complexity of a problem. These classes deal with our notions of
e�cient algorithms, and will come to represent our ideas of which problems are
tractable and which are intractable.
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Figure 5: Known inclusions among complexity classes.
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3.1 DTIME (f (n))

Given a Turing machine M = (Q,Σ,Γ, δ), we think of each application of δ as
representing a distinct time step. Intuitively, when we apply δ, the head �moves�
to some new cell, a process that presumably takes some non-trivial amount of
time. Hence, we are interested in how many time steps are required in order
for M to halt given an input x, if at all. Formally, we say that a function
t : N→ N is a time bound for the Turing machine M if, for all inputs x having
length n, M halts within t (n) time steps. If for some language L there exists
a Turing machine M deciding L and having a time bound t (n) ∈ O (f (n)) for
some function f : N → N, then we say that L is in the class DTIME (f (n))
(deterministic time-bounded)2.

When constructing classes, it is often convenient to think of them as contain-
ing not only languages, but also the machines meeting the restrictions imposed
by the de�nitions of our classes. Thus, we would say that a machineM which has
a time bound t (n) ∈ O (f (n)) for some function f is in the class DTIME (f (n)),
just as we would say that LM ∈ DTIME (f (n)). We shall ourselves make this
switch to emphasize the relationship between the di�culty of a problem and
the computational power whose existence is implied by the ability to solve a
problem. Both views are perfectly valid, and are useful in di�erent contexts.

3.2 P

With the de�nition of DTIME (f (n)) in hand, we may now quickly de�ne a new
class:

P =
⋃
k∈N

DTIME
(
nk
)

The class P is the set of all languages which admit solutions via Turing machines
bounded in time by a function belonging to O

(
nk
)
for some k, and is often called

the set of �polynomial-time� languages. Interestingly, complexity theory does
not in general distinguish between languages for which the best-known Turing
machine for some problem has a time-bound no better than O

(
n100

)
and those

languages for which we can �nd time bounds in O (n), despite that in designing
algorithms for real-world computers, we generally consider anything worse than
O (n lnn) to be too slow to be practical.

The most important reason for this choice is that the composition of two
polynomials is always itself a polynomial. This allows us great power in proving
things about P. For instance, we needn't concern ourselves with whether our
Turing machines are multiple-tape machines or not, as simulating a multi-tape
machine on a single-tape machine incurs at most a polynomial slowdown. Thus,
any polynomial-time algorithm on a multi-tape machine remains a polynomial-
time algorithm on a single-tape machine.

More generally, it is the composition property of polynomials which allows
us to use a Turing machine to model so well in the �rst place. We can simu-

2See Appendix A for the de�nition of O (·).
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late, for example, the execution of a random access machine 3 (RAM) with only
a polynomial slowdown, and so polynomial-time RAM algorithms translate to
polynomial-time Turing machine algorithms. This is why we can consider ma-
trix multiplication to be polynomial-time on a Turing machine. Even the most
naive but reasonable implementation of a matrix multiplication algorithm on a
RAM will have a time-complexity bound no better than O

(
n3/2

)
for a square

matrix having n2 elements (algorithms such as Strassen's lower the exponent
to about 1.4). Thus, even if we simulate a RAM algorithm for matrix multi-
plication without optimizing for execution on a Turing machine, we will have a
polynomial-time Turing machine algorithm for matrix multiplication.

3.3 NP and coNP

One application of complexity theory is to answer questions of whether changes
to our computational model allow us any additional e�ciency. As such, we
consider the impact on our computational power a�orded by allowing our Turing
machines to be non-deterministic, as described in Section 2.4. In particular,
we shall de�ne the class NTIME (f (n)) in analogy to DTIME (f (n)) to include
those languages L for which there exists a non-deterministic Turing machine M
solving L such that M has a time bound in O (f (n)). We then de�ne NP in
analogy to P:

NP =
⋃
k∈N

NTIME
(
nk
)

The problem with this de�nition, however, is that it betrays the subtlety of
NP. Whereas P tells us about what problems can be solved e�ciently, NP tells
us about what problems can be veri�ed e�ciently. Put di�erently, consider a
NTM M = (Q,Σ,Γ, δ0, δ1) solving some language L. By assumption, for all
input x ∈ L, at some point the set of states ofM will include Qaccept. But then,
Qaccept will be included by either δ0 (q1) or δ1 (q1) for some q1 ∈ Q (perhaps
there are multiple� in that case, we only consider one such state arbitrarily). If
q1 6= qstart, then it must also have been reached by either δ0 (q2) or δ1 (q2). In
this way, we can construct a �nite sequence of states {qn, qn−1, . . . , q1, qaccept}
starting with qn = qstart for some n and some string of bits y = ynyn−1 · · · y1

such that δyi
(qi) = qi+1. Given the string y, a deterministic veri�er can check

the computation by choosing which of the two transition functions to apply at
each step. Thus, y acts to prove that x ∈ L. Of course, since M is a machine
in NP, we must have that the computation proving x ∈ L is not longer in time

than a polynomial function of |x|. In particular, |y| ∈ O
(
|x|k

)
for some k ∈ N.

Thus, we may think of NP as telling us what problems we can solve e�ciently
if we are given hints. Yet another interpretation tells us that NP is the class of
problems which may be solved e�ciently by a computer that can make guesses.

Perhaps surprisingly, despite its profound importance, proving things about
NP turns out to be extraordinarily di�cult. In fact, one of the greatest outstand-
ing problems in mathematics is whether P = NP or not. While it is strongly

3See Section C on page 39 for a brief treatment of these machines.
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suspected that P 6= NP, proving that conjecture has confounded every proof
technique currently known to complexity theory. We may even conclusively
prove which proof techniques will be insu�cient!

Note that we have not said anything about rejections by NTMs; this is a
fundamental asymmetry in the de�nition of a NTM, and is re�ected in the
de�nitions of NTIME (f (n)) and NP. In order to talk about the languages L for
which the claim x /∈ L can be quickly veri�ed, we de�ne the complement of NP,
coNP. We say that a language L ∈ coNP if the language L̄ = { x | x /∈ L } is in
NP.

3.4 NP-complete

Given the di�culty of proving the conjecture that P 6= NP, complexity theorists
have imitated the proverbial drunk under the streetlight and have sought out to
answer questions of a more limited scope that still provide us with information
about the structure of NP. In this spirit, we are interested in determining which
problems in NP are the �hardest,� in the hopes that we can �nd some language
L ∈ NP\P. To do so, however, we must have some idea of how to identify those
problems which best encapsulate what it means to be in NP.

The tool used to do so is the process of reduction. If being able to solve a
problem L quickly allows us to solve some other problem M quickly, then we
say that L must be at least as hard asM , since solving it somehow captures the
di�culty of solving M . For example, we commonly want to know if a Boolean

formula f (x1, x2, . . . , xk) (that is, a function of the variables composed only of
the binary operations ∨ and ∧ together with the unary operation ¬) in some

set of variables {xi}ki=1 has a set of assignments such that f evaluates to 1.
This problem, called sat (for �satis�ability�) can be shown to reduce to the
special case where f is expressed in conjunctive normal form, wherein f is the
and of a set of clauses formed by the conjunction of one or more variables and
negations of variables, and where all clauses of f have exactly 3 variables. We
call solving this special case 3sat, and we say that formulas in this special form
are in 3-CNF.

More speci�cally, for every Boolean formula f , there exists a 3-CNF Boolean
formula f ′ whose length is polynomial in that of f , and such that f has a satis-
fying assignment if and only if f ′ has a satisfying assignment. We can transform
a Boolean formula to its 3-CNF form in polynomial-time using a Turing ma-
chine. Note that to carry out this transformation, we need not know what these
satisfying assignments are, or even if they exist. Instead, this transformation
allows us to reduce the problem of deciding the satis�ability of a sat instance
to the special case of deciding if a 3-CNF formula admits any satisfying assign-
ments. Thus, if there exists an algorithm for solving the 3sat decision problem
in polynomial time, there exists an algorithm solving the sat decision problem
in polynomial time: reduce the general sat formula to 3-CNF and apply our P
algorithm for 3sat.

The most famous reduction of all is that proved by the Cook-Levin Theorem,
which translates the axioms of the Turing machine into Boolean formulas such
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that any accepting NP computation corresponds to a satisfying assignment.
Thus, the theorem states that any problem in NP reduces to 3sat, and thus
that 3sat must be at least as hard as any other problem in NP. We would like
to de�ne reductions such that they are transitive, so that any problem to which
3sat reduces shares this property. We then call NP-hard the class of decision
problems4 that are at least as hard as any problem in NP.

Obviously, sat ∈ NP-hard, since sat reduces to 3sat. By similar reasoning,
we can show that NP-hard contains a very large number of interesting problems,
such as graph coloring and the traveling salesman problem (TSP).

If a problem L is both in NP-hard and in NP, then we say that L is complete
in NP:

NP-complete = NP ∩ NP-hard
This has the implication that if there exists any language L in NP-complete∩P,
then we may conclude that P = NP. The failure to �nd any such language
is part of the rationale for believing that P 6= NP. This kind of condition is
common enough in complexity theory that it gets a special name: we say that
NP collapses to P if NP-complete and P are not disjoint.

3.5 PH

In computer science, it is often taken for granted that a program can execute
a subroutine; that is, a program can consult some other, smaller program in
order to arrive at some answer. In the complexity theory, however, one likes
to take as little for granted as possible. Thus, we introduce oracles as a means
of formalizing what is meant by a subroutine. Oracles must be de�ned in ref-
erence to a particular kind of machine, and so we shall proceed to discuss the
impact of oracles upon variants of Turing machines. In particular, we shall be
discussing oracles with respect to multi-tape Turing machines, the details of the
construction of which is left to Appendix D.3.

Suppose that a 2-tape deterministic Turing machine M = (Q,Σ,Γ, δ) has
three special states qoracle, qyes, qno ∈ Q, and consider some language L. Then,
the machine ML, upon entering the state qoracle instantaneously branches into
either qyes or qno, depending on whether the contents of the second tape repre-
sents a string in L or not. We callML an oracle machine with access to L. This
construction provides an abstract way to allow for a machine to �ask questions�
about some other language.

As with any extension of our model of computation, we can use oracles
to de�ne new complexity classes which utilize them. For instance, the class PP

consists of those languages which may be solved in polynomial time by an oracle
machine with access to some arbitrary language in P. Since the composition of
two polynomials is itself a polynomial, however, we have that PP = P.

4Note that some authors de�ne NP-hard to include not only decision problems, but more
general function problems to which problems in NP reduce. Since we are largely restricting
our focus to decision problems in this article, I shall presume that NP-hard only contains such
problems.
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More interesting results come about if we allow a P machine access to an
oracle for an NP language. In fact, we can de�ne an entire hierarchy of oracle
classes. Let ∆0P = Σ0P = Π0P = P, and then de�ne the following for all i ∈ N:

∆iP = PΣi−1P

ΣiP = NPΣi−1P

ΠiP = coNPΣi−1P

Finally, we may de�ne PH:

PH =
⋃
i∈N

(∆iP ∪ ΣiP ∪ΠiP)

At this point, the reader may be well justi�ed in asking why such a construc-
tion is considered at all interesting. Certainly, a model of computation that
allows for a machine to instantly receive answers to hard computation problems
seems fantastical at best. On the other hand, knowing that PH is big and con-
tains machines that are unreasonably powerful gives us tools in analyzing other
classes. If some model of computation leads to a class that contains PH , then
we may take that as evidence that our new model of computation is probably
unreasonable.

Another way that PH helps us is that we can use it to describe collapses.
That is, if some hypothesis would imply that PH is equal to one of ∆iP, ΣiP
or ΠiP for some �nite i, then we generally consider that assumption to be less
likely. For instance, one of the reasons that we conjecture that P 6= NP is
because if P = NP, then NPP = PP = P, and so PH = P. Similarly, if we assume
that NP = coNP (that is, that the existence of witness strings for �yes� answers
implies the existence of witness strings for �no� answers), then PH = NP.

One can also de�ne the levels of PH in a way that doesn't rely upon this
kind of a recursive de�nition by using alternating quali�ers. To do so, we borrow
the terminology laid out by [3] and introduce the idea of a balanced relation.
We say that R is a polynomially-balanced (i+ 1)-ary relation if there is some k

such that for all (x, y1, y2, . . . , yi) ∈ R, each |yi| is bounded by |x|k. Using this
construction, we say that a language L is in ΣiP if there exists a polynomially-
balanced (i+ 1)-ary relation R such that:

L = { x | (∀y1∃y2 · · ·Qyi) (x, y1, y2, . . . , yi) ∈ R }

where Q is either ∀ or ∃, depending on whether i is odd or even, respectively.
Then, we see that PH is the set of all languages de�ned by a �nite sequence of
alternating quali�ers. This construction applies very naturally to the analysis
of two-player deterministic games such as chess5, as we can de�ne a language
of board states which are a win for White in terms of alternating quali�ers: �a
state is a win for White if, for all moves for Black, there exists a response for

5Technically, a slightly modi�ed version of chess in which we cannot �loop� between some
pair of board states. That is, we assume a rule like the ko rules of Go.
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White such that for all of Black's possible moves, ... such that White wins.�
Here, it is understood that the ellipses cover enough quali�ers to describe the
longest possible game of chess. Many other games admit similar descriptions,
and so PH is a natural �t for problems relating to deciding such games.

3.6 Beyond PH: E, EXP, NEXP and EEXP

We can go still further than the polynomial hierarchy, however, and de�ne
exponential-time classes in analogy to the polynomial-time classes that we've
already de�ned. In particular, we de�ne EXP to be the union of DTIME

(
2p(n)

)
for all polynomials p (n) and NEXP to be the union of NTIME

(
2p(n)

)
. These are

classes of problems that grow in complexity so fast that even under the most
generous of assumptions, we have no real hope of being able to solve any but
the smallest instances of these problems. Again, one may ask why such huge
classes are interesting. These classes allow us to �scale up� and �scale down�
results about other classes. For instance, if P = NP, then to deterministically
decide languages in NEXP, we exponentially pad out instances to turn them
into very large instances of NP problems. From there, we know that since (by
assumption) P = NP, we can solve these padded instances in time polynomial in
the padded length; that is, in exponential time. Thus, we have that P = NP⇒
EXP = NEXP. By taking the contrapositive, if EXP 6= NEXP, we can use that
to prove that P 6= NP as a corollary.

This pattern of taking results in one strata and scaling them to another
strata of classes is part of a general pattern in complexity theory. Equality typ-
ically propagates up, while separations (proofs demonstrating that two classes
are not equal) propagate down. Thus, we often introduce classes of problems
far too large and complex to ever reasonably solve directly in an attempt to
answer questions about classes within our grasp. Such classes include not only
exponential time as de�ned here, but exponential time with linear exponents
(E) and doubly exponential time (EEXP), where we allow time complexities of

the form 22poly(n)
.

4 Space-bounded Classes

4.1 PSPACE

In addition to discussing the time complexity of various computational problems,
we can also examine what problems can be solved in a limited amount of space.
To do so, we need to formalize what is meant by using space as a resource. Note
that if a TM always halts, then, as a consequence, it can access only a �nite
number of cells on its tape before halting. Thus, we say that a problem has
space complexity bounded by f : N→ N if there exists a machineM solving the
problem such that M modi�es no more than f (n) tape cells for all strings of
length n. Using this de�nition, we can construct a space-complexity analogue
to P, using DSPACE (f (n)) in place of DTIME to indicate deterministic space
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complexity. We say that a language L is in PSPACE if L has space complexity
bounded by f : N→ N for some f ∈ O (nk) and for some k ∈ N.

Clearly, P ⊆ PSPACE, since we can access no more than one tape cell in a
given timestep. On the other hand, we should not expect that PSPACE ⊆ P,
since space winds up being a much more potent resource. Speci�cally, note that
NP ⊆ PSPACE, since we can simply iterate through all possible witness strings
for some input, and accept only if at least one of the witness strings veri�es
properly.

In fact, there is an important theorem that con�rms our suspicions: the time
and space hierarchy theorem, as stated by [3].

Theorem 1. For all non-decreasing and constructable functions f : N → N,
the following hold6:

• DTIME (f (n)) ( DTIME
(
f (n) log2 f (n)

)
• DSPACE (f (n)) ( DSPACE (f (n) log f (n))

This theorem allows us to quickly state some very important results, such
as P ( EXP. We shall state an analogous result for space complexity shortly.

4.2 L

We can make our space restrictions even tighter, and consider machines that are
only allowed to modify the contents of O (log n) tape cells. If we call the class
of languages solvable by such machines by L, then the space-hierarchy theorem
guarantees that L ( PSPACE. But then, note that L ⊆ P , since an L-machine
admits no more than a constant number of con�gurations for each possible
setting of memory cells, thus meaning that in order for an L-machine to halt (as
opposed to reentering an earlier con�guration), it must have a time complexity
bound in O

(
2logn

)
=
⋃
k∈N O

(
nk
)
. Since P ⊆ PSPACE, we must then have by

the hierarchy theorems that at least one of L ( P or P ( PSPACE is strict. This
is a remarkable result, as it tells us that either additional time or additional
space must buy us something, but without telling us how. This is a wonderful
example of a non-constructive result; a common pattern in complexity theoretic
proofs.

5 Circuit-Model Classes

Sometimes, it will be useful to discuss the complexity of computational problems
by referencing the circuit model of computation, rather than Turing machines.
Just as shifting between the integral and di�erential forms of Maxwell's equa-
tions let physicists solve problems more easily by adapting their approach to
the problem at hand, complexity theorists shift between the di�erent models of
computation in order to analyze problems.

6Note that in the statement of the hierarchy theorems, and throughout the rest of the
article, we use ( to indicate a strict subset.
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As an example of how to make this shift, it turns out that the class P
corresponds exactly to those languages solved by uniform families of polynomial-
size Boolean circuits7. Using this equivalence, we can examine some of the
structure inside P, such as the degree of parallelizability admitted by certain
polynomial-time problems are.

5.1 AC

We can think of each gate in a Boolean circuit as performing some useful compu-
tational work, rather than thinking of a whole circuit as an indivisible system.
In this view, we imagine that each gate takes some �nite amount of time to
�update,� and to produce its answer. Thus, if a computation can be performed
using a circuit where the longest path is relatively short, then no part of the
computation takes very long, and we consider the problem to be somewhat eas-
ier. In particular, even those problems that take polynomially many gates to
solve may only require constant-depth circuits. Such problems would only take
a short amount of time to solve, even if the circuits required are large, and so
we gain computational e�ciency by adding more gates in parallel.

The class AC is a particular way of formalizing this line of reasoning. We say
that a language L is in ACk if there exists an unbounded-fanin uniform family
of circuits C solving L such that the size of each circuit of C is polynomial in
the length of its input, and such that every circuit in C has depth bounded

by a function in O
(

logk n
)
for inputs of length n. In the same way that we

constructed P as the union of DTIME
(
nk
)
over all k, we can now de�ne AC:

AC =
⋃
k∈N

ACk

Aside from the union AC, speci�c levels of the AC-hierarchy are interesting
in their own right for what they tell us about the di�culty of seemingly simple
problems. For instance, the problem majority discussed in Section 2.5 is not
in AC0; we cannot compute majority in constant time, no matter how many
gates we throw at the problem. Similarly, we cannot answer whether the number
of 1 bits in a string is odd or even (the parity problem) in AC0.

5.2 NC

In our construction of AC, we allowed for unbounded fanin, and thus did not
account for an important resource. It isn't clear that we get a reasonable view
of parallel computation by ignoring fanin, and so we de�ne a hierarchy of classes
NCk as before, but with the fanin of each circuit restricted to 2. (Note that any
larger constant fanin can be emulated by a fanin 2 circuit by adding at most
a constant factor to the depth, so the choice of 2 is largely for simplicity.) As

7A proof of this equivalence is given in [3], and is beyond the scope of this article.

19



before, we de�ne NC by taking the union over all integer exponents:

NC =
⋃
k∈N

NCk

It is easy to see that for any k ∈ N, NCk ⊆ ACk, since adding more fanin cannot
possibly reduce the computational power of a circuit. What may be surprising,
however, is that we can emulate unbounded fanin by adding to the depth at
most a logarithmic factor. That is, for all k, ACk ⊆ NCk+1. Thus, we must have
that AC = NC.

6 Probabilistic Classes

Having thus far discussed the impacts on computational power resulting from
time and space bounds, from non-determinism, and from shifting to a di�erent
model of computation, we now have the tools needed to answer a very simple
question: what can a computer do with the ability to �ip a coin? So far, we have
assumed that no matter how many times we let a machine tackle a particular
input, the output will be the same. We have assumed that our computers are
su�ciently well-behaved that we do not have to �double-check� their answers.
As with any assumptions, however, it is natural to ask whether or not our
assumptions actually help.

6.1 ZPP

The most simple way to allow a Turing machine to exploit randomness would
be to specify two transition functions δ0, δ1, and to randomly choose which
one to apply at each time step. This construction then lends itself to a very
natural de�nition. We say that a language L ∈ ZPTIME (f (n)) if there exists a
probabilistic Turing machine M such that M accepts a string x if and only if
x ∈ L and such that the expected time bound for M is within O (f (n)). Then,
we de�ne the class ZPP =

⋃
k∈N ZPTIME

(
nk
)
.

These classes represent what a probabilistic Turing machine can accomplish
with zero probability of error (hence the ZP abbreviation). In practice not many
problems admit random algorithms with zero probability of error that aren't also
amenable to deterministic analysis. For instance, following the discovery of a
ZPP algorithm for primality testing, the AKS algorithm was invented to test
primality in P [9]. Thus, it is not presently clear if ZPP is at all di�erent from
P. On the other hand, it does seem clear that this naive approach to describing
probabilistic Turing machines has problems. Most importantly, we have not
at all relaxed our requirement that a machine always give the correct answer.
Given that we are equipping our Turing machines with the ability to �ip coins,
we might expect that occasionally a machine get a wrong answer.
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6.2 BPP

The most natural next step in understanding probabilistic Turing machines,
then, is to allow our machines to occasionally arrive at the wrong conclusion. If
we let our machines make too many errors, however, we might not wind up any
better than if we had just �ipped a coin ourselves. Thus, we de�ne the class BPP
to be those problems solvable in bounded-error polynomial time. More formally,
if we let the probability that a machineM accepts a string x be denoted pM (x),
then in order for M to solve a language L, we require that pM (x) ≥ 2/3 if and
only if x ∈ L and that pM (x) ≤ 1/3 otherwise.

The choices of 1/3 and 2/3 are actually arbitrary here; if you are only willing
to accept an error probability of 1/9 , for instance, then you simply run a BPP
machine multiple times to amplify the probability of a correct answer. Thus,
another way of thinking about BPP is that we allow for the success probability to
be ampli�ed arbitrarily by bounding the probabilities to lie outside of a constant
interval about 1/2.

That said, there is still a third way to imagine BPP, and one that leads
to a fairly subtle insight. Returning to our construction of non-deterministic
Turing machines in Section 2.4, recall that each NTM M was speci�ed by a
pair of transition functions δ0 and δ1, just as we speci�ed for ZPP in Section
6.1. Thus, we may think of our random choices as exploring the possible paths
of an NTM. Taking this view, our requirement that pM (x) ≥ 2/3 if x ∈ L and
pM (x) ≤ 1/3 otherwise becomes a requirement on the number of paths of our
BPP machine M terminating in Qaccept. Using this construction, we can bring
our understanding of non-determinism to bear on problems of probability.

6.3 PP

Seeing that relaxing our constraints on error probabilities gives us so much more
ability to describe computational processes involving randomness, we may be
tempted to relax these constraints still further. Indeed, what if we only require
that a probabilistic Turing machine give us some bene�t over �ipping a coin and
calling that our answer? De�ne the class PP to be the set of languages L such
that there exists a polynomial-time NTM M such that for any string x ∈ L at
least 1/2 of the computation paths of M (x) accept, while for any string x 6∈ L,
strictly less than 1/2 of the computation paths of M (x) accept.

This class winds up being much harder to analyze, as we can no longer
amplify the success probability; for all we know, the gap between the acceptance
probabilities for x ∈ L and x /∈ L could shrink with the length of x, requiring
us to run the algorithm an increasing number of times to maintain some success
probability. In fact, relaxing this requirement gives so much power that PP
contains languages for each k ∈ N which cannot be solved by circuits of size
O
(
nk
)
[11].
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6.4 MA and AM

Finally, we want to develop probabilistic analogues to NP; that is, we want
to �nd out what kinds of problems we can quickly verify using a probabilistic
veri�er. To do so, it is most convenient to discuss a protocol, rather than a
speci�c machine. In particular, we will de�ne two di�erent protocols between
Arthur, a BPP veri�er, and Merlin, who �nds himself in possession of unbounded
computational resources.

In our �rst attempt at encapsulating what it means to quickly verify prob-
lems in a probabilistic fashion, we suppose that for some language L and input x,
Merlin uses his unbounded resources to generate a proof string y having length

in O
(
|x|k

)
for some k ∈ N such that Arthur will accept the pair (x, y) with

probability at least 2/3 if x ∈ L, and with probability at most 1/3 otherwise. The
class of problems solvable by this protocol, called the Merlin-Arthur protocol, is
called MA. It is easy to see that MA is at least as big as NP, as the only change
in moving to MA is the introduction of a probabilistic veri�er.

Of course, now that we've framed the veri�cation process in terms of two
parties communicating via a protocol, we want to know if we can do more
with this kind of a protocol. To answer this, we let Arthur have a �rst look
at the input x and generate a challenge string based on the input. He sends
Merlin the input, his challenge string and the random choices used in generating
the challenge. Merlin then uses these strings to generate a response such that
Arthur accepts the response with probability at least 2/3 if x ∈ L and at most
1/3 otherwise. The class of problems solvable by this Arthur-Merlin protocol is
called AM, following the naming scheme for MA.

As with so many questions in complexity theory, it is currently unknown
whether allowing Arthur to generate a challenge a�ords us any more power. We
can answer many seemingly unrelated questions in an attempt to build up a set
of lemmas that we hope will eventually be used by a proof of the power of AM
and MA.

7 Quantum Computation

Of course, no discussion of the importance of complexity theory could possibly
be complete without quantum computation. In many ways, quantum compu-
tation is di�erent enough that it is the second distinct model of computation,
aside from the Turing machine (classical computation). As such, we would very
much like to bring the tools of complexity to bear to �gure out what this second
model of computation is. Before we may do so, however, we must build up a
little bit more terminology.

7.1 Reversible Classical Computation

When dealing with quantum bits, called qubits, it is very important to isolate
them from their environs. When a qubit is measured, it decoheres like any other
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quantum state. As such, when a qubit interacts with its environment, errors
are introduced which harm the �delity of the qubit.

This requirement has profound implications for how we design quantum
computers. Thermodynamics tells us that in order to erase information, we
must increase the entropy of a system, and so the only way to make a quantum
computer is to never erase information during a computation. Put di�erently,
quantum computations must be reversible in precisely the sense that the and
and or operations discussed in Section 2.5 are not.

Returning to the classical picture, if you are given the value f (x, y) = x∧ y
for some unknown bits x, y , it is in general impossible to recover x and y, and so
energy must have been expended to erase the information originally contained
in x and y. Thus, we would like to de�ne a set of gates such that an entire
computation may be reversed to recover the input, given some output. As it
turns out, there is actually a single function f : {0, 1}3 → {0, 1}3 which is both
universal for classical computation and reversible, known as the To�oli gate:

f (x, y, z) = (x, y, z ⊕ xy)

To see that this single gate is universal, it su�ces to show that we can emulate
the nand gate, which is universal (but not reversible) for classical computation.
Of course, since nand is a 2-bit to 1-bit gate and the To�oli gate both accepts
and produces three bits, we must introduce an auxiliary bit (known as an ancilla
bit) to actually emulate nand. That is, we would like to produce f (x, y, z) =
(x, y, x nand y) = (x, y,¬x ∨ ¬y). But then, since 1⊕ xy = ¬ (xy), we're done
if we set our ancilla bit to 1.

This in turn shows that we can build a reversible version of any Boolean
circuit by adding enough ancilla bits to our computation. Moreover, we need
not concern ourselves with the requirement that our ancilla bits be set to 1,
since we can uncompute any changes to the ancilla bits by reversing our com-
putation. Finally, note that our simulation of Boolean circuits using reversible
computation did not add more than a constant factor of additional gates, and
so we lose nothing in the asymptotic sense.

7.1.1 A Strange Realization

In their paper introducing the idea of reversible computation as a model of
computation, Fredkin and To�oli also proposed a physical example of reversible
computation, forging a link between physical theories and computational pro-
cesses [6]. By using Newton's laws of motion and assuming perfectly elastic
billiards balls, we can think of a wire as being some path along a table upon
which there may either be a ball or not. Our logical elements then become
interactions between two balls, guided by �xed obstacles called mirrors.

Fredkin and To�oli applied this model to implement the Fredkin gate, shown
in Figure 6 on the next page. The Fredkin gate is also known as the controlled-
swap gate, as the operation of the gate is to swap two of its inputs if the control
input is 1, and to act as the identity gate if the control is 0. One particular
billiard-ball implementation of this gate is built up using switch gates, where
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Figure 6: Operation of the Fredkin gate.

Figure 7: Billiards-ball based switch gate.

a ball is redirected onto one of two di�erent paths based on whether or not a
ball is present along a control path. An example of a billiard-ball switch gate
is shown in Figure 7, where the path of a ball along path x is changed based
on a whether there is a ball along the control path c. Note that if c and x are
both set (have balls along the paths), then the balls that eventually winds up
on paths c and x swap with each other. Since we consider individual balls to
be indistinguishable, this is �ne, and greatly simpli�es the construction of the
gate.

The Fredkin gate is also universal for computation, and so the billiards-ball
computer is demonstrably equivalent to the Turing machine in power. Since
we only assumed Newton's laws in constructing the billiards-ball computer, this
tells us that we cannot in general analytically solve said laws of motion. If
we could, then we could also solve the halting problem, as each instance of
the problem would be a speci�c arrangement of mirrors and balls, and would
reduce to deciding if a ball ever exits some region of our table. Thus, we have
already shown something very profound: physical theories carry with them some
inherent computation di�culty. This realization will be revisited in Section 10.
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7.2 Modeling Quantum Computation

7.2.1 The Quantum Circuit Model

It turns out that, in practice, while the Turing machine is well-suited to describe
classical computation, extending it to the quantum case is messy at best. While
we may meaningfully discuss quantum Turing machines (QTMs), our attention
will be better spent by (at least temporarily) focusing on an analogue of the
classical acyclic Boolean circuit model described in Section 2.5 called, unsurpris-
ingly, the quantum circuit model (QCM) [2]. Just as we exploited equivalences
between classical Boolean circuits and Turing machines, we shall use the QCM
to model the same processes for which we might have instead invoked a QTM.

In the QCM, we model the time evolution of a quantum system admitting
only discrete energy states by the application of a sequence of matrices, called
gates. To illustrate the principle, we can formulate a similar construction for

classical gates, such as representing the not gate as

[
0 1
1 0

]
. In order for the

reversibility constraint to be upheld, we require that any quantum gate must
be unitary ; that is, a gate U must satisfy I = UU† where I is the identity, and
U† is the Hermitian of U .

If we represent a qubit |ψ〉 = a |0〉 + b |1〉 by |ψ〉 =
[
a
b

]
, then all of our

classical gates immediately have quantum circuit realizations. Moreover, we
can construct gates with no classical equivalent, such as the Hadamard gate H:

H =
1√
2

[
1 1
1 −1

]
The e�ect of this gate is to shift the basis of ψ from {|0〉 , |1〉} to {|+〉 , |−〉},
making the Hadamard gate very useful in exploiting the linearity of quantum
states. Another interesting set of single-qubit gates are those phase rotation

gates generated by the function R (θ):

R (θ) =
[
1 0
0 eiθ

]
Some quantum gates acting on multiple qubits can be built up by using the
tensor product of simpler gates. For instance, given a single-qubit gate U , we
can apply U to only the second of two qubits by applying the tensor product
to the identity gate I and to U : I ⊗ U . In this construction, we represent a
two-qubit product state |ψ〉 |φ〉 as the tensor product of the two single-qubit
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|q0〉 • ⊕ •
|q1〉 ⊕ • ⊕

(a) Swap operation

|q0〉 H
Uf(x)

H

|q1〉 H

(b) Deustch's Algorithm

Figure 8: Sample quantum circuits.

state vectors:

|ψ〉 =
[
a
b

]
|φ〉 =

[
c
d

]

|ψ〉 |φ〉 =
[
a
b

]
⊗
[
c
d

]
=


ac
ad
bc
bd


Other gates include the controlled-not gate (cnot), represented by an ⊕

symbol in quantum circuit diagrams such as the example circuit in Figure 8a
demonstrating how to swap two qubits. The matrix representation of C cannot
be written as the tensor product of any two smaller matrices, showing that we
cannot factor cnot gates into any simpler gates:

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Put di�erently, C |x, y〉 = |x, x⊕ y〉. Of course, we can make any unitary 2× 2
matrix U controlled in this manner:

C (U) =
[
I 0
0 U

]
Since quantum circuits are quite di�erent from Boolean circuits, it is helpful to
have a way of representing them graphically. We draw gates as squares, with a
mathematical symbol representing what the gate is. Quantum wires are drawn
as single lines, while classical wires are drawn as double lines. For instance, the
circuit shown in Figure 8b implements the famed algorithm of Deustch.

7.2.2 Universal Gates for QCM

Just as with classical computation, we are very interested in a set of quantum
gates such that any other quantum gate can be constructed by repeated ap-
plications of our universal set of gates. It turns out that the Hadamard and
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R (π/4) single qubit gates together with the phase rotation and controlled-not
two qubit gates form a universal set, in the sense that any other gate can be
approximated with arbitrarily small error by compositions of these gates [10].

This is quite advantageous, as it shows that many-qubit gates need not be
directly constructed, but rather, we can focus on constructing a set of small
and local gates. Similarly, the existence of a small set of universal gates makes
proving many things about quantum computation easier, in the same way that
knowing that nand was universal for classical computation allowed us to quickly
conclude in Section 7.1 that the To�oli gate was as well.

7.3 BQP

As we discussed in Section 5 on page 18, P can be formulated as the set of lan-
guages solvable by uniform families of polynomial-size circuits. Thus, in analogy
to that de�nition, we would like to de�ne a polynomial-time class for quantum
computation by using the QCM model developed above. Unfortunately, we run
into a problem: quantum measurement is inherently probabilistic, and so we
must account for the possibility that our quantum algorithms generate wrong
answers. To do so, we rely upon the discussion of BPP in Section 6.2 on page 21
and require that our quantum algorithms succeed at least 2/3 of the time.

Putting it together, a language L is in BQP if there exists a uniform family
of quantum circuits C such that:

Pr [C (x) accepts] :

{
≥ 2/3 x ∈ L
≤ 1/3 x /∈ L

where C (x) indicates the application of x as input to the circuit in C for inputs
of length |x|.

With BQP, complexity theory has given us the language that we need to
answer a very important question: are quantum computers more powerful than
classical computers? We will discuss this question in more detail in Sections
9.1 through 9.3, but for now, su�ce to say that we have already discovered
BQP algorithms for important problems that are not currently believed to be
tractable by classical computers. For instance, the famous Shor's Algorithm
shows that factoring integers and �nding discrete logarithms are both problems
that are tractable by quantum computers [12].

8 Other Classes

We have barely scratched the surface of what questions complexity theory is
poised to answer. There are many more classes of problems which are open to
study, and we could not possibly do justice to all of them here. Nonetheless,
before leaving our tour of complexity theory, we shall explore a few of the more
exotic classes.
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8.1 P/poly

Amongst the strange powers which we can bestow upon our Turing machines is
that of advice. Loosely, P/poly is the class of problems solvable in polynomial-
time by a Turing machineM which takes as input a string x and an advice string
y which depends only on the length of x. Elaborating a bit, a P/poly machine
is one which is given some arbitrarily di�cult to compute string y along with
each input, subject to the constraints that y cannot depend on the input, but
only on its length, and that y has a length bounded by a polynomial in the
length of the input. Advice represents a relaxation of the uniformity constraint
on families of Boolean circuits discussed in Section 2.5, since an advice string is
essentially a way of representing that di�erent sizes of Boolean circuits may be
generated by di�erent algorithms.

To see the incredible power that advice allows for, note that P/poly includes
at least one uncomputable language. In particular, suppose that L is an un-
computable language (this is a safe assumption, as we have demonstrated the
existence of at least one uncomputable language). Then, consider the language
L′ = { 1x | x ∈ L }, where 1x means a sequence of ones whose length is the
number described by the binary string x. We may then construct a machine
which solves L′ by checking that a string contains only ones, and by giving the
machine one bit of advice for input x′:

y =

{
0 |x′| /∈ L
1 |x′| ∈ L

Of course, P/poly cannot compute arbitrary uncomputable languages, as the
construction of L′ above depended on an exponential enlarging of the original
uncomputable language L. Nonetheless, we see that adding non-uniformity
(advice) to a Turing machine can a�ord large amounts of computational power.
This insight goes a long way towards explaining why we require uniformity in
the construction of Boolean circuits.

8.2 SZK

In all of our discussions of veri�cations and witness strings as employed by classes
like NP (Section 3.3) and MA (6.4), the veri�er could turn around and send
whatever witness string he was given to a second veri�er, and thus convince them
of the veracity of some statement. In some cases, however, this is an undesirable
property, as we would like to convince someone of the veracity of some claim
without the veri�er learning anything about the problem. That is, we would like
a veri�er to have statistical zero knowledge after the veri�cation protocol has
completed. The technical details of how to state this requirement are beyond
the scope of this article, but we can give an example that communicates the
spirit of this idea.

Consider two graphs, G and H, and suppose that Arthur wants to know if G
and H are isomorphic to each other, and that he has access to BPP machines.
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Then, if Merlin wants to prove to Arthur that G and H are non-isomorphic,
using his vast computational power, but such that Arthur cannot then convince
anyone else that G 6∼= H, he can o�er Arthur the following protocol. First,
Arthur randomly permutes the vertices of both G and H, then o�ers both to
Merlin. Merlin then tells Arthur which he believes to be the graph permuted
from G. If G ∼= H, Merlin can do only this with probability 1/2, while if
G 6∼= H, and if Merlin can solve graph isomorphism, then he can identify G with
probability 1. Thus, with each round of this protocol, Arthur can halve the
probability with which a cheater would fool him. On the other hand, replaying
this protocol to some other agent would not convince them that G 6∼= H, as
Arthur presumably knew which graphs he permuted into which. Thus, while
Arthur has indeed learned that G 6∼= H, he has not learned anything that would
allow him to reproduce this proof.

We call the class of problems admitting such a protocol by SZK.

8.3 #P

Thus far, we have restricted our view of complexity to the study of Boolean
functions. While it can be seen that this view a�ords a lot of explanatory
power, we need not exclude other conceptions of what a problem is. We can,
for example, consider function problems of the form f : {0, 1}∗ → {0, 1}∗. The
most basic class of such function problems is #P, the set of function problems
solvable by counting the number of accepting paths of an NP machine. That is,
a problem f (x) is in #P if there exists a machine M ∈ NP such that M (x) has
exactly f (x) paths that end in an accepting state. Clearly, such a construction
generalizes NP to the world of function problems, an in some sense implies a
model of computation strictly more powerful than that implied by NP.

The most direct application of #P is as an oracle to other classes. In par-
ticular, the class P#P is powerful enough to contain all of PH [14].

Part III

Applications and Implications

9 Why We Care About Quantum Computers

In science, nothing is ever quite as exciting as if we are wrong. Being wrong
allows us to explore all sorts of new possibilities, new theories and new applica-
tions. Being wrong demonstrates that science, at some basic level, is successfully
self-correcting. Most importantly, though, when we �nd out that we are wrong,
we may set about becoming right.

Quantum computers o�er us an unprecedented opportunity to be wrong.
If feasible, they threaten an assertion known as the Church-Turing Thesis. If
they aren't feasible, then presumably, they must fail because we were wrong at
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some fundamental level, and we can then go about developing new fundamental
physics. Either way, we learn something of profound importance about our
world.

9.1 The Church-Turing Thesis

For nearly one hundred years, we have considered the Church-Turing Thesis as
stating the edge of computational power. Informally, the Church-Turing Thesis
states that no physically-realizable computer is more powerful than a Turing
machine. Alternately, the Thesis asserts that any computational process can
be simulated by a Turing machine. In particular, the Church-Turing Thesis
seems to claim that quantum computers are no better than classical computers,
as we can run simulations of quantum computers using classical computational
processes. Of course, to evaluate this claim, we must make formal what we
mean by �more powerful,� and we shall �nd that the language of complexity
theory is well-suited for the task.

The Church-Turing Thesis actually can be interpreted in two di�erent rea-
sonable ways, which have become known as the weak and strong forms of the
thesis. The weak form claims that there does not exist a language which can be
solved by a physically-realizable computer but which is unsolvable for a Turing
machine. The strong form claims that no language can be solved faster on a
physically-realizable computer (in the asymptotic sense) than on a Turing ma-
chine. Since we already know that classical computers such as Turing machines
can simulate quantum computers, if only very slowly, it is speci�cally the strong
form of the Church-Turing Thesis with which we are concerned.

One speci�c consequence of the Strong Church-Turing Thesis that is more
amenable to analysis than the general claim is the claim that there does not exist
any language solvable in polynomial time by a quantum computer, but which
requires strictly more than polynomial time to solve on a classical computer.
The existence of such a language would give us a concrete proof that quantum
computational processes can not be e�ciently simulated by classical computers.
Thus, if we discover that P ( BQP, then we will have disproved the Strong
Church-Turing Thesis, and in doing so, will have blown open the frontiers of
computing.

9.2 P = BQP?

The question then becomes, is P strictly smaller than BQP or not? At the
present, this is an open question in complexity theory, but as always, we still
seek evidence towards one conclusion or the other. What might such evidence
look like? If P = BQP, then we should expect to �nd some algorithm that can
quickly simulate the execution of a quantum computer. Such an algorithm would
have to provide a polynomial-time simulation, and must derandomize quantum
algorithms; that is, the algorithm would have to simulate the quantum computer
without access to randomness, and without any probability of error. Thus, we
would also expect to �nd an algorithm by which we could derandomize classical
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probabilistic machines, instructing us that if we wish to demonstrate P = BQP,
it would be helpful to �rst demonstrate that P = BPP.

To date, we have not found any algorithm which derandomizes arbitrary
machines in BPP, but we have been able to derandomize many speci�c algo-
rithms. For instance, the problem of testing an integer for primality admits a
fairly simple (for number theory, anyway) BPP algorithm. It was long thought
that the problem of primality testing was somehow intrinsically probabilistic,
and thus that we should not expect to see a deterministic algorithm. Recently,
however, a deterministic polynomial-time algorithm was invented for primal-
ity testing, lending credence to the idea that derandomization may be more
generally possible [9].

9.3 P ( BQP?

By contrast, evidence that P ( BQP may take the form of demonstrating a
language L ∈ BQP\P. While this may sound straightforward, it is often very
di�cult to prove that a language is not in some speci�c class, because you must
make a statement for every machine in that class. Speci�cally, proving P ( BQP
would follow directly from proving that:

(∃M ∈ BQP) (∀N ∈ P) (∃x ∈ Σ∗) : M (x) 6= N (x)

This kind of an alternating-quali�er statement packs a very large amount of
content into very terse mathematical language, and hides the di�culty of for-
mulating a proof. As such, current e�orts have largely focused on proving
smaller claims about speci�c languages in the hopes of developing a framework
by which one may show P ( BQP if indeed it is the case.

9.4 How Quantum Computers Might Fail

On the other hand, what if quantum computation is found to be infeasible?
Then, we must ask how quantum computers fail. For instance, it could be that
there is something at fault with quantum theory itself.

In that case, quantum computers will have very successfully given us pro-
found hints into the workings of the universe. Though this may sound like
an exaggeration, it is not. Something we can learn from the quantum circuit
model is that every quantum computational process can be described precisely
using the language of quantum mechanics. Of course, it is always possible to
describe non-existent phenomenon using any valid theory, such as writing down
a force that could not possibly correspond to any physically realizable process.
This is why it is advantageous to speak of quantum circuits in terms of a small
set of elementary gates: in order for the whole circuit to correspond to some
physical process, we only need that every gate within the circuit is realizable.
Therefore, in a very concrete sense, the validity of quantum mechanics and of
quantum computation are quite closely married indeed. The strength of this
coupling have even led to a system of thought where quantum mechanics is the
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�operating system� on which any process may run, and where the �real world�
corresponds to a speci�c choice of a Hamiltonian operator.

It may also be that decoherence turns out to be insurmountable, and that our
qubits will never be able to last throughout a whole computation. This mode
of failure, however, is not well supported by experiment. From our present
experience, we suspect that keeping decoherence down to a tolerable level is
only exceedingly di�cult, not impossible. We have discovered no fundamental
reason why the problem of decoherence should be paramount, and indeed, we
have made great strides in reducing the problem over the past 20 years. For
this trend to halt, we must discover some new frustration that prevents us from
properly isolating a quantum computational process from the outside world.
Such a new frustration would again give us great insight, and could even possibly
be turned around to provide some immediate concrete bene�t.

Another possibility often posed by critics is that even under the best of
circumstances, the error rates in preparing and communicating quantum states
and in applying gates would be too high to overcome. This scenario, however,
stands in direct contradiction with the �ndings from a rich �eld of study in
quantum error correction. Just as it is possible to transmit classical data with
arbitrarily high �delity across a noisy channel by the use of error-correcting
codes so long as the error rate of the noisy channel is below some reasonable
threshold, it is likewise possible to achieve arbitrarily high �delity in a noisy
quantum channel. Just as we ampli�ed the success rate of machines in BPP and
BQP (see Sections 6.2 and 7.3, respectively), we may iteratively repeat an error-
correcting algorithm to reduce the error probability associated with a quantum
channel or gate. Thus, in order for error-correction to fail in such a way as
to render quantum computation infeasible, the assumptions underlying error-
correction algorithms must fail. Speci�cally, that would imply that errors are not
randomly distributed, but are adversarily chosen to frustrate error correction.
Such an adversarial model of error would require quite a lot of computational
power, indeed; no less computational power than the machine it is trying to
defeat, certainly. This is an important point, and re�ects a general process
in thinking about quantum computers: in order to be infeasible, there must
be some other process at work of even greater computational power. Thus, if
we are wrong and quantum computers are infeasible, we should expect more
computational power may be exploited, and not less.

10 Complexity of Evaluating Physical Theories

With the increasing use of computational simulation in theoretical physics over
the past several decades, physicists have suddenly found themselves called upon
to understand how to e�ciently program their simulations. In rising to the call,
many physicists have learned how to program in a variety of di�erent languages
and environments. Debates rage endlessly about which language is most e�cient
for carrying out large linear algebra calculations and how to properly vectorize
arithmetic to exploit modern processors. Moreover, physics students are taught

32



what toolkits, libraries and techniques to use in order to e�ectively and e�ciently
perform simulations.

As we have seen, though, there are much larger concerns. All of these con-
cerns a�ect only the multiplicative constants in our time complexities� the very
constants that complexity theorists deem too insigni�cant to consider! As Don-
ald Knuth famously opined, �we should forget about small e�ciencies, say about
97% of the time: premature optimization is the root of all evil. [5]� All the vec-
torization in the world won't help a program that uses bubble-sort, an O

(
n2
)

algorithm, as opposed to quicksort, which has a time complexity in O (n log n).
Even worse are those simulations which demand the solving of problems that
aren't even in P.

In response to the di�culties of choosing appropriate algorithms, one may
well ask for reasonable lower bounds on the complexity of evaluating some
physical theory. A particularly poignant example, and one which we visited
in detail in Section 9, is what di�culty is inherent to simulating quantum me-
chanics. If any simulation of quantum mechanics could be completed using only
polynomial-time algorithms, then we could simply simulate the perfect opera-
tion of a quantum computer and thus show that P = BQP. Thus, �nding a
lower bound to the complexity associated with quantum mechanics itself would
be instrumental in separating P from BQP. This is an important point, and one
that bears repeating: if is true that P ( BQP, then that is because quantum
mechanics as a theory requires super-polynomial amounts of computing power
to simulate on a Turing machine. Thus, in a very real sense, P ( BQP implies
that quantum mechanics is a complex theory.

Even in the classical case, we can make nontrivial conclusions about the
complexity inherent to physical theories. Ben-Hur and Siegelmann, for instance,
de�ned a model of computation based on some initial real-valued function re-

laxing to a �nal result via a di�erential equation [1]. By restating the maximum
�ow problem to exploit such a continuous model of computation, Ben-Hur and
Siegelmann argued that solving a single ordinary di�erential equation having
polynomial-time convergence is inherently as hard as simulating polynomial-
time computation. Thus, for those physical theories based upon ODEs, it can
be argued that these theories are at least as complicated as any problem in P.

Finding less obvious examples, however, is a demanding project. With that
in mind, I would ask the reader to indulge me the leisure of speculating about
future research. As we shall see in Section 11, we suspect that universe simply
does not allow for extremely powerful computational models to operate. Thus,
we should not expect any physical theory to require similarly extreme resources
to evaluate, or else we would have that the universe is performing computation in
a manner inaccessible to us. In spite of these di�culties, however, it is my sincere
belief that this line of reasoning provides much in the way of hidden promise. As
our understanding of the interconnections between computer science and physics
grows and matures, we should expect to see such interdisciplinary questions as
these to be explored more and more thoroughly. The relatively nascent �eld of
complexity theory is rapidly developing the rich toolkit needed to understand
questions of profound and direct importance to the practice of physics.
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11 Physical Theories and Computational Power

For much of the history of physics, we have held that the law of conservation of
energy is correct, and that it can be used to evaluate potential physical theories
for correctness. We reject nearly out of hand any physical theory that fails to
properly conserve energy, for we have had centuries of experience telling us that
such theories are always incorrect. Even though it was not until Noether's famed
theorem of 1918 that this law was escalated to a theorem, we have successfully
derived much value from the empirical statement that correct physical theories
respect the conservation of energy.

Of course, this guideline has not survived intact through the ages, and has
been revised as we come to understand the laws of physics better. For instance,
we have discovered, thanks to Einstein, that conservation of mechanical energy
as formulated in the vocabulary of Newtonian physics cannot hold, but rather we
must change our understanding of energy to incorporate the energy stored as rest
mass. Similarly, with quantum mechanics, we have learned that conservation
of energy must be a statistical law, or else we would contradict Heisenberg's
Uncertainty Principle. What has remained, however, is the basic principle that
energy is neither created nor destroyed. This principle has given us a great tool
with which we may evaluate potential theories.

Other similar guidelines have been used throughout the history of physics to
guide our intuitions when the plausible theoryspace is too large to fully evaluate.
For example, we have tended to reject theories which fail to respect causality
and locality, though again, these principles required some re�ning in light of
quantum theory. We have built up a venerable library of things which we do
not expect correct physical theories to allow, including events occurring before
their causes, transmitting information faster than the speed of light, violation
of unitarity, globally decreasing entropy and absolute zero temperatures.

Some complexity theorists, most notably Aaronson, argue that we should
likewise not expect to ever be able to solve NP-complete problems e�ciently
[15]. Taking this view, we presently live in a time much like just before Noether's
Theorem was proved, in that we believe that we will one day be able to prove
conclusively that NP-complete problems are inherently intractable, rather than
merely awaiting some new innovation. Thus, even in the absence of such a
proof, we may start to act on the assumption that P 6= NP, and in fact, that
classes including all of NP are physically unrealizable. This kind of a principle
can be arrived at by studying some hypothetical computational models, called
hypercomputers, that would allow the e�cient solving of intractable problems.

11.1 Hypercomputers

Essentially, we can construct a model of hypercomputer by giving a Turing ma-
chine access to some kind of resource that we generally consider to be physically
unreasonable. Of these resources, perhaps the most obvious extension would be
to consider a Turing machine that can compute an in�nite number of transi-
tions in a �nite time interval, essentially revoking the time-complexity bounds
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of our more physical classes. There is even an obvious story we can tell that
may explain how such a machine works: we take advantage of time dilation by
moving our Turing machine at ever-faster velocities, such that we observe the
�rst transition in one second, the second transition in 1/2 s, the third in 1/4 s,
and so on. Then, an in�nite number of steps could be completed within a �nite
interval, allowing for the expenditure of an in�nite amount of energy. It should
be clear that an in�nite-time hypercomputer could, for instance, be able to solve
all of NP by simply iterating through all possible witness strings and checking
them.

We would like to �nd a way of a�ording additional computational power
without in�nite time, however, to further suggest that super-Turing power may
in fact be physically unrealizable. Thus, we extend the time resource of a Turing
machine not by allowing an in�nite amount of time, but by allowing a Turing
machine to exploit bits along closed timelike curves (CTCs). Put di�erently,
we can let a Turing machine send bits back in time to itself. Of course, we
would have to restrict the machine to be causally consistent, and so we would
essentially be letting Nature set the values of the CTC bits to a �xed point for
the computation being carried out by the TM. That is, we would presume that
the universe will choose values for our CTC bits such that the our computation
does not change them, thus resolving all causality paradoxes. As it turns out,
such a Turing machine would be able to solve all of PSPACE in polynomial
time, as one might expect: in the context of classical computation, time travel
essentially allows us to treat time as a space resource, overwriting our CTC bits
until we arrive at a stable answer.

Of course, there are much less ridiculous examples; indeed, if the universe
allows for analog computers (also known as real computers in that they work
over the real numbers), we may well be able to exploit them to perform e�cient
computation. While the speci�c model of analog computer has a great amount of
bearing on what we can accomplish with one, we can rather informally construct
a model that gives rise to immense amounts of computational power.

We should not expect, however, that analog computers of this kind are any
more reasonable than any other of our hypercomputers. Presumably, the uni-
verse must store our real-valued registers somewhere. Either we must assume
that the storage of our registers takes up an in�nite amount of space in order
to represent the full precision, or we must be able to store arbitrary amounts of
information within a �nite volume. In the �rst case, we shall argue in Section
11.2 that we cannot possibly interact with all of the bits of our in�nite-volume
analog register, and so we must presume that analog registers take a �nite
volume. This assumption, however, is fraught with its own problems. Since
our model of analog computation allows us to extract bits of information from
analog registers, we duplicate all the problems attending to storing an in�nite
number of bits in a �nite volume. Again, we shall argue in Section 11.2 why
this is unreasonable, but for now su�ce to say that analog computation does
not save us from the limits imposed on computation by the universe, but rather
shows us how fundamental these limits truly are.
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11.2 Fundamental Limits

Of course, we can also turn the question around, and can construct more limited
models of computation that try to take into account fundamental limitations
imposed by the laws of physics. As an informal example, note that since the
universe is expanding, the bits involved in a computation may recede outside of
a computational device's lightcone, resulting in some of the bits involved in a
computation becoming causally separated from the rest. Of course, one could
not simply pack the bits into an arbitrarily tight space, since the holographic
principle places a strict bound on the entropy that may ever be contained within
a region of space. Thus, the expansion of the universe together with the existence
of black holes places a severe restriction upon what any computational process
may achieve.

We should, however, expect this to be the case: if computation is inherently
physical, we should expect that some computational processes are unphysical
in exactly the same sense that some mechanical processes are unphysical. For
instance, the holographic bound developed by Susskind shows that computation
is constrained in the amount of entropy that can be involved [8]. In the same
vein, Bousso �nds an upper bound of N = 3π/Λ on the number of bits of
information which ever may be causally related in a de Sitter space, where Λ is
the cosmological constant [13].

These kinds of results show us speci�c examples of principles that are al-
ready well-understood; namely, they show us that the universe imposes limits
on the scope of computation. It is not enough to merely understand that these
limits exist, though. We must understand these limits, using the language that
complexity theory gives us.

11.3 An Extended Church-Turing Thesis

We have seen that the laws of our universe can be exploited to perform com-
putation, but that the universe in turn limits what computations we can per-
form. That is, computational processes are physical processes. For example,
the billiards-ball computer described in Section 7.1.1 depends crucially on New-
tonian mechanics, and is implied by the existence of a world describable by
Newtonian mechanics. Similarly, quantum computers depend on quantum me-
chanics, and are inherently a part of any world in which quantum states evolve
in a unitary fashion.

On the other hand, we can also simulate physical systems using compu-
tational processes. As a speci�c example, we can simulate the dynamics of
quantum systems using Turing machines, even if we cannot do so quickly. If we
believe quantum mechanics to be a good description of the universe, then that
implies that we can simulate arbitrary physical systems. Note, however, that we
cannot necessarily evaluate these systems, as we discovered with the billiards-
ball computer. Rather, we can simulate each speci�c timestep of a quantum
system, even if doing so may lead us into an in�nite loop. That ability does not
imply that our system will ever reach an �answer state.�
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Of course, we don't believe quantum mechanics to be complete, but in the
same sense that general relativity and quantum mechanics both approximate to
Newton's laws of motion in the right regimes, we should expect that a complete
description of the universe will not invalidate simulations of quantum systems.
Rather, we should expect that a complete description will allow us to simulate
systems currently outside of the regime in which we �nd that quantummechanics
is valid, such as inside black holes. Indeed, neither GRT nor quantum mechanics
in any way prevent us from making meaningful simulations of what we now call
classical physics, but rather each extends our reach to allow for more simulation
power.

These arguments, taken together, suggest something very profound: that
any physical process can be simulated by a universal computational device.
This assertion is known as the Church-Turing-Deutsch (CTD) Thesis after its
original formulator, David Deutsch [4]. Note that we can quickly recover our
familiar Church-Turing Thesis by considering the simulation of a physical pro-
cess which performs some useful computation. Thus, the CTD Thesis is truly
a generalization of the the Church-Turing Thesis that completes the connection
of computation back to the physical world.

12 Concluding Thoughts

Having laid out my arguments, I would like to return for a moment to the title
of this article: Why Complexity Matters. In short, it has been my experience
that complexity theory o�ers us a bridge between computer science and physics,
to say nothing of formal mathematics. Physics and computer science are both,
at their heart, ways of understanding the world around us. As such, I have
found that complexity o�ers us a language in which to formulate our questions
and our pursuits.

In the same way that physicists have come to rely upon group theory and
other mathematical tools to frame their understanding and to serve as a lan-
guage for describing problems, I believe that computer scientists and physicists
alike will come to value complexity theory. Thus, while I cannot and do not
want to demand that students and researchers expose to themselves to com-
plexity theory, I will readily encourage my peers and teachers alike to partake
of this opportunity to connect their �elds of research to a broader whole.

In summary, we have seen that complexity theory is, among other things, a
language for describing problems in computer science. In particular, complexity
theory allows us to evaluate objectively the power of quantum computation, to
state claims about the scope of computation allowed in the physical world and
to formally describe how simulation relates the complexity of computation and
of physical theories.

Since we have seen by way of these examples that computation and the
physical world are intrinsically tied, we have that complexity theory is thus also
a language for describing problems in physics.
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Part IV

Appendices

A Big-O Notation

In computer science, we very often care only for how quickly a problem grows
and not for speci�c details of the hardware that is currently available. A bad
algorithm gets worse as computers get faster, as the complexity starts to outpace
the growth in hardware capabilities. Thus, notation has evolved to re�ect this
emphasis. We are not concerned, for instance, with the di�erence between
f (n) = n2 + 100 and g (n) = 2n2 + 3. In fact, we say that both f (n) and g (n)
are in the set of functions O

(
n2
)
. Some authors will write f (n) = O

(
n2
)
, but

I shall avoid this notation as I �nd it quite abhorrent.

De�nition 2 (Ω (·), O (·) and Θ (·)). Given functions f, g : N→ N, we say that
f (n) ∈ O (g (n)) if there exists a constant c ∈ N such that f (n) ≤ cg (n) for all
n ∈ N. Similarly, we say that f (n) ∈ Ω (g (n)) if there exists a constant c ∈ N
such that cf (n) ≥ g (n) for all n ∈ N. If f (n) ∈ O (g (n)) and f (n) ∈ Ω (g (n)),
then we write that f (n) ∈ Θ (g (n)).

We conclude with some examples of big-O notation:

lnn ∈ O (n)
n lnn, n2 ∈ O

(
n2
)

1000n4 ∈ Θ
(
n4
)

2n ∈ Ω (1)
1 ∈ O (2n)

B The Pumping Lemma

In order to demonstrate that simple models of computation such as the deter-
ministic �nite automata cannot accurately model computation in general, we
present here the Pumping Lemma for deterministic �nite automata, based on
the development of [7].

Theorem 3 (Pumping Lemma ). For each language L solved by a deterministic

�nite automata, there exists n ∈ N such that for all strings w ∈ L such that

|w| ≥ L, we can write w as the concatenation of three other strings, x, y and z,
such that the following hold:

1. y is not the empty string.

2. |x|+ |y| ≤ n.
3. For all k ∈ N∪{0}, the string xykz ∈ L, where yk is the concatenation of

y with itself k times.
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Proof. Let L be a language solved by a deterministic �nite automataM having n
states, and consider some input w = w1w2 · · ·wn. Note that at any point during
the processing of w, M can be completely described by noting its present state.
Thus, let q0, q1, q2, . . . , qn be a sequence of states such that M is in state qi
after reading i symbols from w; in particular, let q0 = qstart. But then, we note
that by the pigeonhole principle, the states {qi} are not all distinct, since the
sequence q0, . . . , qn is n+1 states long, and since there are only n distinct states
in M . Thus, let i, j ∈ N ∪ {0} such that 0 ≤ i < j ≤ n and such that qi = qj .
Note that the substring y = wi+1wi+2 · · ·wj leads M in a loop, provided M
starts reading y while in state qi. Thus, we can repeat y as many or as few
times as we please without changing the result of M 's computation.

More formally, let x = w1w2 · · ·wi, y = wi+1wi+2 · · ·wj , and let z =
wj+1wj+2 · · ·wn. Then, since i < j, we have that |y| > 0. Moreover, since
|x| + |y| + |z| = n, we have that |x| + |y| ≤ n. Finally, since the number of
repetitions of y cannot change the computation of M on w, and since M solves
L by assumption, we have that since xykz is accepted by M for all k, xykz ∈ L
for all k. We have thus con�rmed all three claims of our theorem.

Example 4. We can apply the Pumping Lemma to prove an earlier assumption
that the language L of balanced parentheses is not solvable by DFAs. To see
this, suppose that a DFA M exists such that LM = L. Then, the Pumping
Lemma gives us that there exists some n such that we can pump all strings in
L that are at least as long as n. In particular, consider w = (n)n. This string is
obviously in L, and so we there exists some substrings x, y, z such that w = xyz
and such that xykz ∈ L for all k. In particular, consider xyyz. Since w begins
with n opening parens, we have that y must be comprised entirely of opening
parens, and thus xyyz has strictly more opening parens than xyz. But then, we
have not added any closing parens, and so xyyz /∈ L. This is a contradiction,
and so we have that L is not solvable by any DFA.

C Random Access Machines

We have thus far glossed over the connection between Turing machines and the
computers we are more familiar with. Thus, in this appendix, we show that a
random access machine, which we allow to have access to registers much like
those of conventional computers, can be simulated by a Turing machine without
introducing more than a polynomial overhead.

In de�ning a random access machine, we follow the construction of [3]. We
say that a random access machine (RAM) has access to an in�nite number of
registers {ri}∞i=0, each of which can store an arbitrarily large integer. Each RAM
executes a RAM program Π = (π1, π2, . . . , πm), where each πi is an instruction

to the RAM. An instruction tells the RAM to perform a particular operation.
We shall allow the read, store, load, add, sub, half, jump, jpos, jzero,
jneg and halt instructions, as per Table 1. Some instructions take an operand,
which is an integer by which the semantics of the instruction are parameterized.
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Name Description

read(j) Sets r0 to rj .
read

′(j) Sets r0 to rrj
.

store(j) Sets rj to r0.
store

′(j) Sets rrj
to r0.

load(x) Sets r0 to x.
add(x) Sets r0 to r0 + x.
sub(x) Sets r0 to r0 − x.
half Sets r0 to br0/2c.
jump(k) Sets κ to k.
jpos(k) If r0 > 0, sets κ to k.
jzero(k) If r0 = 0, sets κ to k.
jneg(k) If r0 < 0, sets κ to k.
halt Halts execution.

Table 1: Instructions allowed by a RAM.

Note that in de�ning these instructions, we consider r0 di�erently from all other
registers. In that sense, r0 is a work register, also known as an accumulator.

All instructions other than the jump instructions and halt increment a
special register κ, called the program counter. At each step, the RAM executes
the instruction πκ. When given an input x, represented as a �nite sequence of
integers (x1, x2, . . . , xn), we initially set registers r1 through rn so that ri = xi.
When and if a RAM halts, we consider its output to be the contents of r0.
Moreover, we shall consider the language L solved by some program Π to be
the set L = { x | Π (x) = 1 }, provided Π halts on all inputs.

Though a proof of such is beyond the scope of this appendix, it can be shown
that for any language L solved by a RAM program Π in no more than f (n)
instructions for any input of length n, L can be solved by a seven-tape Turing
machine8 with a time complexity in O

(
f3 (n)

)
. The basic idea is that we use

four tapes to store the current state of the RAM and three tapes to implement
each instruction. The �rst tape will be read-only and set to the input to Π.
The second tape will hold the value in each register, stored as a list of binary
numbers separated by some delimiter symbol. The third tape will hold a binary
representation of κ. Finally, the fourth tape will hold the index of the register
currently being looked for on the second tape.

A similar proof would show that RAMs can simulate TMs of time complexity
f (n) using O (f (n)) instructions. Thus, up to a polynomial overhead, we have
that RAMs and TMs are identical in computational power. It is easy to see that
dealing with Turing machines is often much more convenient, since we need not
consider a plethora of distinct instructions when proving things, but instead we
may deal with a transition function in the abstract. This, together with the
fact that polynomials are closed under function composition, shows why we are

8See Section D.3 for a construction of multi-tape TMs.
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justi�ed in using Turing machines to construct P, along with other complexity
classes.

D Turing Machine Variations

The Turing machine model outlined in Section 2.3 is but one of a set of variations
of the same basic idea. We can modify our model of a Turing machine so that
it has multiple tracks, multiple tapes, or has a tape that extends to in�nity in
both directions.

D.1 Multi-track

One of the more basic variations that we can make to a Turing machine is
to include a tape with two separate �tracks,� each of which has its own in-
dependent memory cells. We would still like the read/write head to be able
to point only at one tape position at a time, however. We shall write the
description of such a multi-track Turing machine with n di�erent tracks as
M = (Q,Σ,Γ, δ) where δ : Q× Γn → Q× Γn × {←, •,→} is the new transition
function. This gives us a hint as to how to make an equivalent single-track
Turing machine: we let M ′ = (Q,Σ,Γ′, δ′), where Γ′ = Γn with the transi-
tion function δ′ (q, γ1γ2 · · · γn) = (q′, γ′1γ

′
2 · · · γ′n, d), where δ (q, γ1, γ2, . . . , γn) =

(q′, γ′1, γ
′
2, . . . , γ

′
n, d). The transformed machine M ′ obviously �nishes in exactly

the same amount of time as M , since each application of δ corresponds to ex-
actly one application of δ′. This shows us that multiple tracks do not a�ord us
any additional computational power, and so we may use them with impunity
whenever it makes our life simpler.

D.2 Bidirectional

Many authors choose to de�ne Turing machines to have tapes that extend to
in�nity in both directions, rather than just the one. Using the multi-track con-
struction of the previous section, we can now show concretely that a bidirectional-
tape machine has access to no more computational power than a unidirectional
model.

Given a machine M = (Q,Σ,Γ, δ) having a bidirectional tape, we can con-
struct an 2-tape machine M ′ = (Q′,Σ,Γ, δ′) that simulates M by �folding� the
bidirectional tape about some origin. Denote the special symbol past the left
edge of the tape onM ′ by B (sinceM ′ is a 2-track machine, the left edge symbol
will technically be B × B, but for brevity we shall denote the edge by B). Let
Q′ = Q∪Q, where Q is a copy of Q that indicates that directions are reversed.
Then, specify δ′ such that δ′ (q,B) = (q,B,→), where q is a the matching state
for q in Q (or in Q if q ∈ Q) that indicates that directions are reversed. For all
other symbols, let δ (q, γ) = (q′, γ′, d) and specify that:

δ′ (q, γ, γ2) = (q′, γ′, γ2, d)
δ′ (q, γ1, γ) =

(
q′, γ1, γ

′,−d)
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where −d indicates that the direction d is reversed. Note that this construction
never causes more than twice as many applications of δ′, since in the worst case
scenario, every transition of M crosses the origin (at B), and since only in the
case of an origin crossing do we introduce even one extra transition. Since we
do not consider constant factors in our O (·) notation, we can thus rest assured
that bidirectional tapes are no more powerful than unidirectional tapes.

D.3 Multi-tape

It is often useful to consider Turing machines which have multiple in�nite tapes
on which to store data. For instance, the simulation of a random access ma-
chine by a Turing machine described in Section C depended crucially on the
availability of multiple tapes, each with its own read/write head. Formally, we
consider an n-tape Turing machine to be a tuple M = (Q,Σ,Γ, δ) where the
transition function has the form δ : Q× Γn → Q× Γn × {←, •,→}n.

To simulate the behavior of an n-tape machine M using a single-tape ma-
chine M ′ = (Q′,Σ,Γ′, δ′), we construct M ′ with 2n tracks, partitioned into
pairs. Each pair of tracks represents one of M 's tapes, with the �rst track con-
taining only a special marker symbol at the position of M 's read/write head for
that tape, and with the second track containing the full contents of the corre-
sponding tape in M . To simulate an application of δ, M ′ scans its tape to �nd
the symbols currently being read by each ofM 's tapes and stores these symbols
in its �nite state. We can do this by letting Q′ have the form Q × Γn. Once
the read symbols have been found, δ′ transitions M ′ to a state corresponding
to the next state of M and proceeds to write out the new symbols to its tape.

This process involves no more than two full scans of the tape of M ′ for each
iteration of M . Since in the worst case, M ′ cannot have a tape longer than
the number of iterations of M , this means that the time complexity of M ′ is in
O
(
f2 (n)

)
, where f (n) is the time complexity of M . A more formal version of

this argument can be found in [3].
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Attributions

Figure 8a is a sample provided with the qasm2circ software package. Used under
the terms of the GNU GPL version 2.
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