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Motivation

Characterizing unknown quantum systems is critical for
design of control.

Enabling adaptive measurement allows for large
reductions in data collection costs.
Want accurate reporting of errors incurred by estimate,
and of smallest credible regions.
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Learning Frequencies and T2

Consider a single qubit undergoing Larmor precession at an
unknown frequency ω:

H(ω) =
ω

2
σz, |ψin〉 = |+〉 , M = {|+〉 〈+| , |−〉 〈−|}

If the qubit is also undergoing dephasing, we can model this
by an exponentially decaying visibility, e−t/T2 , where we would
like to learn T2.
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Numerical Results: Unknown T2

Our method allows for ω and T2 to be learned with very few
measurements.
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Moreover, using our best available knowledge to optimize
experiment designs, we can continue to learn about ω even in
the presence of unknown T2.
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Our Approach

Model data collection as a probability distribution
Pr(D|ω,T2; t), and then update via Bayes’ rule,

Pr(ω,T2|D, t) =
Pr(D|ω,T2; t)

Pr(D|t)
Pr(ω,T2),

where D is the observed data.

Report as estimates ω̂ and T̂2 the expectation value over the
updated distribution.

Simulation and learning are very closely connected.
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Sequential Monte Carlo

To implement our approach on a computer, we approximate
distributions by a sum over weighted delta functions,

Pr(ω,T2) =
∑

i

wi · δ(ω − ωi)δ(T2 − (T2)i).

Each term in this sum is called a particle, and is described by
the weight wi and the model (ωi, (T2)i).

Updates to distributions now require evaluation the model
Pr(D|ω,T2; t) at a finite number of points. Integrals over
distributions are now represented by finite sums.
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Sequential Monte Carlo

With SMC and resampling, particles move towards the true
model as data is collected.
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Adaptive Experiment Design

We wish to find measurements that minimize the error we
incur when averaging over hypotheses about the true model,
and about future data.

Because the sequential Monte Carlo approximation gives us a
distribution, we can reason directly about the estimation error
by performing a Bayes update for each possible measurement
outcome, then finding the expected error given by the
covariance.
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Numerical Results: Adaptive Experiment Design
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Conclusions

Statistical inference can be used to characterize unknown
quantum systems.

Sequential Monte Carlo allows for Bayesian updates to be
efficiently implemented on a classical computer.
Current best knowledge can be applied to adaptively
design new experiments and measurements.
Our approach is generic, treating simulation as a resource
for learning.
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Further Information

Slides, a journal reference for this work, a full bibliography
and a software implementation can be found at
http://www.cgranade.com/research/rohl/ .

Thank you for your kind attention!

http://www.cgranade.com/research/rohl/

